首页 | 本学科首页   官方微博 | 高级检索  
     

流形学习及维数约简在数据隐私保护中的应用
引用本文:向婷婷,罗运纶,王学松. 流形学习及维数约简在数据隐私保护中的应用[J]. 计算机工程与应用, 2011, 47(8): 79-82. DOI: 10.3778/j.issn.1002-8331.2011.08.024
作者姓名:向婷婷  罗运纶  王学松
作者单位:1.北京师范大学 信息科学与技术学院,北京 100875 2.北京师范大学珠海分校 信息技术学院,广东 珠海 519085
摘    要:采用流形学习及维数约简方法可以有效保护敏感数据。针对交通事故黑点的敏感数据挖掘中隐私保护问题,提出了综合应用等距变换和微分流形两种算法来提高原始数据保密程度的方法,采用基于旋转的等距变换扰乱数据,用Laplacian Eigenmap对高维数据进行非线性降维,在保留数据内在几何结构的同时,进一步扰乱数据。该方法有效地应用于交通事故黑点数据隐私保护中,同时降低了原始数据的维数,便于后续的数据挖掘与分析。

关 键 词:隐私保护  微分流形  等距变换  拉普拉斯特征映射  
修稿时间: 

Application of manifold learning and nonlinear dimensionality reduction in private preserving
XIANG Tingting,LUO Yunlun,WANG Xuesong. Application of manifold learning and nonlinear dimensionality reduction in private preserving[J]. Computer Engineering and Applications, 2011, 47(8): 79-82. DOI: 10.3778/j.issn.1002-8331.2011.08.024
Authors:XIANG Tingting  LUO Yunlun  WANG Xuesong
Affiliation:1.Department of Information Technology,Beijing Normal University,Beijing 100875,China 2.Department of Information Technology,Beijing Normal University Zhuhai Campus,Zhuhai,Guangdong 519085,China
Abstract:To deal with the privacy preserving problem during data mining for sensitive black points in traffic accidents,this paper presents a new method,which is based on the isometric transformation and the differential manifold,to improve the privacy preserving level of the original data.It disturbs the data by doing isometric transformation based on rotation.The nonlinear dimensionality reduction is done to high-dimensional data with Laplacian Eigenmap to further disturb the data,while preserving the inner structure of the data at the same time.This method is effectively applied to the privacy preserving problem during data mining for sensitive black points in traffic accidents,while reducing the dimensionality of the original data for later data mining and data analyzing.
Keywords:privacy preserving  differentiable manifold  isometric transformation  Laplacian eigenmap
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号