首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习和遥感影像的露天矿自动提取方法研究
引用本文:刘发发1,' target='_blank'>2,韩红太1,' target='_blank'>2,张 敏1,' target='_blank'>2,麻连伟1,' target='_blank'>2. 基于深度学习和遥感影像的露天矿自动提取方法研究[J]. 中州煤炭, 2021, 0(6): 82-85,262. DOI: 10.19389/j.cnki.1003-0506.2021.06.014
作者姓名:刘发发1  ' target='_blank'>2  韩红太1  ' target='_blank'>2  张 敏1  ' target='_blank'>2  麻连伟1  ' target='_blank'>2
作者单位:(1.河南省地球物理空间信息研究院,河南 郑州 450009; 2.河南省地质物探工程技术研究中心,河南 郑州 450009)
摘    要:非法开采不仅危害国家资源,威胁国家财产安全,也存在重大安全隐患,寻找快速发现非法开采行迹的解决办法迫在眉睫。利用光学遥感影像进行人工解译,费时费力、效率极低;而传统的露天矿遥感自动解译方法,或基于像素,或基于面向对象,利用的图像特征简单且数量较少。将深度学习的全卷积神经网络算法引入露天矿自动提取中,充分从底层特征中挖掘大量高层抽象特征,实现露天矿智能高效解译。实验结果表明,该方法在一定程度上有效提高了露天矿识别的准确率,能够为及时发现非法露天矿开采提供基础的数据技术支持。

关 键 词:深度学习  全卷积神经网络  光学遥感影像  露天矿  自动提取

 Research on automatic extraction method of open-pit mine based on deep learning and remote sensing images
Liu Fafa1,' target='_blank'>2,Han Hongtai1,' target='_blank'>2,Zhang Min1,' target='_blank'>2,Ma Lianwei1,' target='_blank'>2.  Research on automatic extraction method of open-pit mine based on deep learning and remote sensing images[J]. Zhongzhou Coal, 2021, 0(6): 82-85,262. DOI: 10.19389/j.cnki.1003-0506.2021.06.014
Authors:Liu Fafa1  ' target='_blank'>2  Han Hongtai1  ' target='_blank'>2  Zhang Min1  ' target='_blank'>2  Ma Lianwei1  ' target='_blank'>2
Affiliation:(1.Henan Institute of Geophysics and Spatial Information,Zhengzhou 450009,China;2.Henan Geological and Geophysical Exploration Engineering Technology Research Center,Zhengzhou 450009,China)
Abstract:Illegal mining occurs frequently,which not only endangers national resources and threatens the security of national property,but also may bring major security risks.
Therefore,it is extremely urgent to find a solution to early and quickly find the illegal mining track.The manual interpretation of optical remote sensing image is time-consuming and laborious,and the efficiency is extremely low.Traditional automatical open-pit mine interpretation in remote sensing method is either based on pixels,or object-oriented,which uses simple and limited image characteristics.In this paper we introduce the deep learning algorithm FCN into open-pit mine automatic extraction.This method can fully dig high-level features from the underlying ones,realizing the interpretation of open-pit mine intelligently and efficiently.The experimental results showed that,the method improves the accuracy of open-pit mine recognition in a certain extent,which will provide a fundenmental technical support for the timely detection of illegal open mining.
Keywords:  deep learning   fully convolution networks   optical remote sensing images   open-pit mine   automatic extraction
点击此处可从《中州煤炭》浏览原始摘要信息
点击此处可从《中州煤炭》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号