首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO-WPESN的短期电力负荷预测方法
引用本文:周红标,王乐,卜峰,应根旺. 基于PSO-WPESN的短期电力负荷预测方法[J]. 电测与仪表, 2017, 54(6). DOI: 10.3969/j.issn.1001-1390.2017.06.019
作者姓名:周红标  王乐  卜峰  应根旺
作者单位:淮阴工学院 自动化学院,江苏 淮安,223003
摘    要:精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率小波包分解方法对负荷数据进行分解和重构,建立小波包回声状态网预测模型;然后,利用粒子群算法对预测模型储备池中的参数进行优化。实验结果表明:针对短期电力负荷动态时间序列数据,与BP、Elman、传统ESN等网络相比,PSO-WPESN网络的预测精度、稳定性和泛化能力都得到明显增强,尤其是能在一定程度上缓解由于输出矩阵过大造成ESN存在病态解的弊端。

关 键 词:粒子群  小波包分解  回声状态网  电力负荷  短期预测

Short-term power load forecasting method based on PSO-WPESN
Zhou Hongbiao,Wang Le,Bu Feng,Ying Genwang. Short-term power load forecasting method based on PSO-WPESN[J]. Electrical Measurement & Instrumentation, 2017, 54(6). DOI: 10.3969/j.issn.1001-1390.2017.06.019
Authors:Zhou Hongbiao  Wang Le  Bu Feng  Ying Genwang
Abstract:Accurate short-term power load forecasting is an important guarantee for power production scheduling and safe and stable operation.It is also an important part in the construction of smart grid.In order to improve the prediction accuracy of the model, a new short-term power load forecasting method based on wavelet packet echo state network optimized by particle swarm optimization is proposed in this paper.Firstly, the load data is decomposed and reconstructed by wavelet packet method, and the prediction model of wavelet packet echo state network is established.Then, the prediction model parameters of dynamic neurons reservoir is optimized by particle swarm optimization algorithm.The experimental results show that the forecasting accuracy, stability and generalization ability of PSO-WPESN have been significantly enhanced, comparing with BP, Elman, traditional ESN, especially overcomes shortcomings caused by excessive output matrix.
Keywords:particle swarm  wavelet packet decomposition  echo state network  power load  short-term forecasting
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号