首页 | 本学科首页   官方微博 | 高级检索  
     

一种引入复合形算子的变异粒子群算法
引用本文:符强. 一种引入复合形算子的变异粒子群算法[J]. 计算机工程与应用, 2008, 44(31): 47-50. DOI: 10.3778/j.issn.1002-8331.2008.31.013
作者姓名:符强
作者单位:宁波大学,科学技术学院,浙江,宁波,315211
摘    要:针对粒子群算法存在的收敛速度较慢和早熟收敛两大难题提出了一种新的改进型粒子群算法:搜索初期由粒子群算法进行全局寻优,当判断粒子群体已经进入局部最优区域时,引入复合形算法迅速达到局部收敛,从而有效地提高粒子群算法的局部搜索能力。同时引入自适应变异惯性权重提高摆脱局部最优的能力,增加种群的多样性。通过典型优化函数的实验验证,该算法是一种兼顾局部性能和全局搜索能力的高效算法。

关 键 词:粒子群算法  复合形算法  自适应变异
收稿时间:2008-04-28
修稿时间:2008-7-8 

Adaptive mutation particle swarm algorithm using the complex method
FU Qiang. Adaptive mutation particle swarm algorithm using the complex method[J]. Computer Engineering and Applications, 2008, 44(31): 47-50. DOI: 10.3778/j.issn.1002-8331.2008.31.013
Authors:FU Qiang
Affiliation:College of Science and Technology,Ningbo University,Ningbo,Zhejiang 315211,China
Abstract:To deal with the problem of premature convergence,slow convergence velocity,a novel Particle Swarm Optimization(PSO) algorithm is proposed.At the beginning of the evolution,PSO can search global area and find the local range quickly,and then,complex method would locate the extremum in the local range rapidly.The self-adaptive mutation inertia weight is used in the whole evolvement to break away from the local extremum,which can effectively solve the premature convergence problem.The experiment results of two classic benchmark functions show that the algorithm can not only significantly improve the convergence velocity and precision in the evolutionary optimization,but also effectively enhance the global optimization power.
Keywords:Particle Swarm Optimization(PSO)  complex method  self-adaptive mutation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号