首页 | 本学科首页   官方微博 | 高级检索  
     


Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels
Authors:Heyun WANG  Yakai FENG  Marc BEHL  reas LENDLEIN  Haiyang ZHAO  Ruofang XIAO  Jian LU  Li ZHANG  Jintang GUO
Affiliation:1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072, China; Kantstr. 55, 14513 Teltow, Germany; 3. Helmholtz-Zentrum Geesthacht, Center for Biomaterial Development and Berlin Brandenburg Center for Regenerative Therapies (BCRT), Institute of Polymer Research, Kantstr. 55, 14513 Teltow, Germany
Abstract:In this paper, a scaffold, which mimics the morphology and mechanical properties of a native blood vessel is reported. The scaffold was prepared by sequential bi-layer electrospinning on a rotating mandrel-type collector. The tubular scaffolds (inner diameter 4 mm, length 3 cm) are composed of a polyurethane (PU) fibrous outer-layer and a gelatin-heparin fibrous inner-layer. They were fabricated by electrospinning technology, which enables control of the composition, structure, and mechanical properties of the scaffolds. The microstructure, fiber morphology and mechanical properties of the scaffolds were examined by means of scanning electron microscopy (SEM) and tensile tests. The PU/gelatin-heparin tubular scaffolds have a porous structure. The scaffolds achieved a breaking strength (3.7±0.13 MPa) and an elongation at break (110±8%) that are appropriate for artificial blood vessels. When the scaffolds were immersed in water for 1 h, the breaking strength decreased slightly to 2.2±0.3 MPa, but the elongation at break increased to 145±21%. In platelet adhesion tests the gelatin-heparin fibrous scaffolds showed a significant suppression of platelet adhesion. Heparin was released from the scaffolds at a fairly uniform rate during the period of 2nd day to 9th day. The scaffolds are expected to mimic the complex matrix structure of native arteries, and to have good biocompatibility as an artificial blood vessel owing to the heparin release.
Keywords:electrospinning  artificial blood vessels  scaffold  polyurethane  gelatin  nanofiber  hemocompatibility  
点击此处可从《Frontiers of Chemical Science and Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Chemical Science and Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号