首页 | 本学科首页   官方微博 | 高级检索  
     

汉语词性标注的特征工程
引用本文:于江德,周宏宇,余正涛. 汉语词性标注的特征工程[J]. 山东大学学报(工学版), 2011, 41(6): 12-17
作者姓名:于江德  周宏宇  余正涛
作者单位:1.安阳师范学院计算机与信息工程学院, 河南 安阳 455002;2. 昆明理工大学信息工程与自动化学院, 云南 昆明 650051
基金项目:国家自然科学基金资助项目(60663004);河南省高等学校青年骨干教师项目(2009GGJS-108)
摘    要:上下文特征对汉语词性标注性能有重要影响。为了提高标注性能,采用最大熵模型探讨了汉语词性标注的特征工程,对其中的两个关键问题:特征窗口大小和特征模板集的设定,本文作者进行了深入研究。在Bakeoff2007的PKU、NCC、CTB 3种语料上进行了封闭测试,通过对“5词语”和“3词语”不同大小的特征窗口,以及单词语、双词语和两者混合的不同特征模板集进行汉语词性标注的训练过程和标注精度的对比实验,实验结果表明:3词特征窗口训练情况和标注性能均优于5词窗口;单词语特征模板集比双词语特征模板集标注性能高出10%。这说明汉语词性标注中特征窗口开设的大小以3词窗口为宜,单词语特征模板集标注性能更好。

关 键 词:汉语词性标注  最大熵模型  上下文特征  特征窗口  特征模板  
收稿时间:2011-04-15

Feature engineering for Chinese part-of-speech tagging
YU Jiang-de,ZHOU Hong-yu,YU Zheng-tao. Feature engineering for Chinese part-of-speech tagging[J]. Journal of Shandong University of Technology, 2011, 41(6): 12-17
Authors:YU Jiang-de  ZHOU Hong-yu  YU Zheng-tao
Affiliation:1. School of Computer and Information Engineering, Anyang Normal University, Anyang 455002, China;2. School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming  650051, China
Abstract:Context features have a major impact on the performance of Chinese part-of-speech tagging. In order to improve the performance, the feature engineering for Chinese part-of-speech tagging was explored by the using maximum entropy model. Two key issues of feature engineering, the size of the feature window and the feature templates, were studied. Closed evaluations were performed on PKU, NCC and CTB corpus from the Bakeoff-2007. Then, comparative experiments about the training process and tagging accuracy for Chinese part-of-speech tagging were performed on different feature windows, the “5 words” and “3 words” feature windows, and different feature templates: single-word, double word and mixing feature templates. Experimental results showed that the feature window including 3 words was better than that of 5 words, and the performance increased 10% using single-word feature templates than double-word feature templates. All the results showed that the feature window including 3 words and single-word feature templates were appropriate for Chinese part-of-speech tagging.
Keywords:Chinese part-of-speech tagging  maximum entropy model  context feature  feature window  feature template
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号