首页 | 本学科首页   官方微博 | 高级检索  
     


performance control of robot manipulators with kinematics,dynamics and actuator uncertainties
Abstract:This paper deals with the task‐space trajectory tracking control problem of robot manipulators. An improved adaptive backstepping controller is proposed to deal with the uncertainties in kinematics, dynamics, and actuator modeling. To avoid the explosion of computation in conventional backstepping techniques, a modified dynamic surface control algorithm is proposed, which guarantees the asymptotic convergence rather than the uniformly ultimately boundedness of tracking errors in conventional dynamic surface control methods. Furthermore, the expression of the urn:x-wiley:rnc:media:rnc3604:rnc3604-math-0003 norm of tracking errors is explicitly derived in relation to the controller parameters, which provides instructions on tuning controller parameters to adjust the system performance. Moreover, the passivity structure of the designed adaptation law is thoroughly analyzed. Simulation of a free‐floating space robot is used to verify the effectiveness of the proposed control strategy in comparison with the conventional tracking control schemes. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:robot manipulators  tracking control  adaptive dynamic surface control  uncertainties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号