首页 | 本学科首页   官方微博 | 高级检索  
     

基于结构化低秩表示和低秩投影的人脸识别算法
作者姓名:刘作军  高尚兵
作者单位:(淮阴工学院计算机工程学院,江苏 淮安223003)
基金项目:国家自然科学青年基金(61402192);江苏省高校自然科学研究面上项目(14KJB520006);江苏省先进制造重点实验室开放课题(HGAMTL-1401)
摘    要:在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法--SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。

关 键 词:低秩矩阵恢复  结构化低秩表示  低秩投影  稀疏表示分类  
收稿时间:2016-01-13
修稿时间:2018-01-25
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号