首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗集的朴素贝叶斯分类算法及其应用
引用本文:杨帆,张彩丽. 基于粗集的朴素贝叶斯分类算法及其应用[J]. 计算机工程与应用, 2007, 43(29): 189-191
作者姓名:杨帆  张彩丽
作者单位:陕西科技大学,电信学院,陕西,咸阳,712081;陕西科技大学,机电学院,陕西,咸阳,712081
基金项目:陕西科技大学校科研和教改项目
摘    要:朴素贝叶斯方法是数据库分类知识挖掘领域一项基本技术,具有广泛的应用。论文针对朴素贝叶斯方法的限制,提出了基于粗集理论的贝叶斯的分类知识挖掘方法。该方法首先基于粗集理论的属性约简能力,根据数据库中条件属性和决策属性之间的依赖关系,进行属性的约简处理,然后基于朴素贝叶斯方法进行分类知识挖掘。实验结果表明,基于粗集理论的贝叶斯分类方法改善了贝叶斯分类方法中属性之间独立的限制,简化了挖掘模型,使挖掘性能具有明显的优化。

关 键 词:粗糙集  贝叶斯  信息约简  数据挖掘
文章编号:1002-8331(2007)29-0189-03
修稿时间:2007-03-01

Rough set based na(i)ve bayesian classification algorithm and it's application
YANG Fan,ZHANG Cai-li. Rough set based na(i)ve bayesian classification algorithm and it's application[J]. Computer Engineering and Applications, 2007, 43(29): 189-191
Authors:YANG Fan  ZHANG Cai-li
Affiliation:1.Institute of Electricity and Information Engineering,Shaanxi University of Science & Technology,Xianyang,Shaanxi 712081,China 2.Institute of Mechanical and Electrical,Shaanxi University of Science & Technology,Xianyang,Shaanxi 712081,China
Abstract:NaIve Bayesian method is basic technology that has been applied widely for class knowledge discover in database.Since the restriction of attribute dependency in naIve Bayesian method,Rough set theory based Bayesian class knowledge mining method has been proposed.With this method,dependency relation between conditional attributions and class attribution has been taken synthetically into account,attributes of conditional attributions has been reduced based on rough set with its ability of attribution reduction,finally naIve Bayesian method with reduced attributions has been used for the class knowledge discover in database.Experiment result indicates that rough set based Bayesian class model can ameliorate the restriction of attributions independence in naIve Bayesian method,simplify class mode mining model and optimize markedly performance of mining arithmetic.
Keywords:rough set  naIve Bayes  attribute reduction  classified knowledge
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号