首页 | 本学科首页   官方微博 | 高级检索  
     

蚁群优化神经网络的网络流量混沌预测
引用本文:吴文铁,宋曰聪,李敏. 蚁群优化神经网络的网络流量混沌预测[J]. 计算机工程与应用, 2012, 48(34): 97-101
作者姓名:吴文铁  宋曰聪  李敏
作者单位:绵阳师范学院 数学与计算机科学学院,四川 绵阳 621000
基金项目:四川省教育厅项目,绵阳师范学院2011校级学科群建设项目
摘    要:为了网络流量预测准确性,提出一种蚁群算法(ACO)优化BP神经网络(BPNN)的网络流量混沌预测模型(ACO-BPNN)。对网络流量时间序列进行重构,将BPNN参数作为蚂蚁的位置向量,通过蚁群信息交流和相互协作找到BPNN最优参数,建立网络流量最优预测模型,并采用实测网络流量数据进行有效性验证。结果表明,ACO-BPNN能够准确刻画网络流量变化特性,提高网络流量的预测准确性。

关 键 词:网络流量  蚁群优化算法  BP神经网络  混沌预测  

Chaotic prediction of network traffic based on neural network optimized by ant colony optimization algorithm
WU Wentie , SONG Yuecong , LI Min. Chaotic prediction of network traffic based on neural network optimized by ant colony optimization algorithm[J]. Computer Engineering and Applications, 2012, 48(34): 97-101
Authors:WU Wentie    SONG Yuecong    LI Min
Affiliation:Department of Mathematics and Computer Science, Mianyang Normal University, Mianyang, Sichuan 621000, China
Abstract:In order to improve the prediction accuracy of network traffic, this paper proposes a network traffic prediction model based on neural network optimized by ant colony optimization algorithm(ACO-BPNN). The data of network traffic are reconstructed by chaotic theory. The parameters of BPNN are considered the position vector of ants. The optimal parameters are found by ant colony optimization algorithm. The: optimal model for network traffic is built and the performance of mode are tested by network traffic data. The simulation results show that ACO-PBNN can describe the change rule of network traffic accurately and can improve prediction accuracy.
Keywords:network traffic  ant colony optimization algorithm  BP neural network  chaotic prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号