首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化LeNet-5的近红外图像中的静默活体人脸检测
引用本文:黄俊,张娜娜,章惠. 基于优化LeNet-5的近红外图像中的静默活体人脸检测[J]. 红外技术, 2021, 43(9): 845-851
作者姓名:黄俊  张娜娜  章惠
作者单位:上海海洋大学信息学院,上海 201306;上海建桥学院信息技术学院,上海 201306
基金项目:上海市教育委员会“晨光计划”基金项目AASH1702
摘    要:针对当前交互式活体检测过程繁琐、用户体验性差的问题,提出了一种优化LeNet-5和近红外图像的静默活体检测方法.首先,采用近红外光摄像头构建了一个非活体数据集;其次,通过增大卷积核、增加卷积核数目、引入全局平均池化等方法对LeNet-5进行了优化,构建了一个深层卷积神经网络;最后,将近红外人脸图片输入到模型中实现活体静...

关 键 词:LeNet-5  卷积神经网络  全局平均池化  近红外图像  静默活体检测
收稿时间:2020-12-01

Silent Live Face Detection in Near-Infrared Images Based on Optimized LeNet-5
Affiliation:1.College of Information Technology, Shanghai Ocean University, Shanghai 201306, China2.College of Information Technology, Shanghai Jian Qiao University, Shanghai 201306, China
Abstract:An improved method of silent liveness detection for LeNet-5 and near-infrared images is proposed to overcome the problem of the interactive liveness detection process and poor user experience. First, a face attack dataset was constructed using a near-infrared camera. Second, the LeNet-5 was optimized by increasing the number of convolution kernels and introducing global average pooling to construct a deep convolutional neural network. Finally, the near-infrared face image is input to the model to realize silent liveness detection. The experimental results show that the proposed model has a higher recognition rate for the liveness detection dataset, reaching 99.95%. The running speed of the silent liveness detection system is approximately 18-22 frames per second, which shows high robustness in practical applications.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《红外技术》浏览原始摘要信息
点击此处可从《红外技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号