首页 | 本学科首页   官方微博 | 高级检索  
     

基于组合预测方法的风电场短期风速预测
引用本文:彭怀午,刘方锐,杨晓峰. 基于组合预测方法的风电场短期风速预测[J]. 太阳能学报, 2011, 32(4): 543-547
作者姓名:彭怀午  刘方锐  杨晓峰
作者单位:1. 内蒙古电力勘测设计院,呼和浩特,010020
2. 华中科技大学电气与电子工程学院,武汉,430074
基金项目:国家自然科学基金重点项目,国家重点基础研究发展计划
摘    要:基于持续法、人工神经网络法(ANN)和支持向量机(SVM)3种不同预测模型对内蒙古某风电场短期风速进行了预测研究,比较了不同单一预测模型的预测精度,并进行了4种不同预测模型的组合预测。计算结果表明,单一预测模型中支持向量机方法精度最高,而组合预测中3种方法组合的预测精度最高,并且组合预测精度均高于单一预测方法的精度。同时发现,当单一模型预测误差之间存在较强的负相关关系时,组合预测精度提高明显;而当单一模型预测误差之间存在较强的正相关关系时,则组合预测精度改进有限。

关 键 词:短期风速预测  持续法  人工神经网络  支持向量机  组合预测

SHORT TERM WIND SPEED FORECAST BASED ON COMBINED PREDICTION
Peng Huaiwu,Liu Fangrui,Yang Xiaofeng. SHORT TERM WIND SPEED FORECAST BASED ON COMBINED PREDICTION[J]. Acta Energiae Solaris Sinica, 2011, 32(4): 543-547
Authors:Peng Huaiwu  Liu Fangrui  Yang Xiaofeng
Affiliation:Peng Huaiwu1,Liu Fangrui2,Yang Xiaofeng1 (1.Inner Mongolia Power Exploration & Design Institute,Hohhot 010020,China,2.College of Electrical & Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
Abstract:Three different prediction models were investigated for short term wind speed prediction of a wind farm in this paper.The adopted prediction models are persistence method,artificial neural network(ANN) and support vector machine(SVM),respectively.The performance of three prediction models were compared.Four kinds of combined predictions of three model were evaluated as well.The calculated results show that the SVM method performs best among the individual prediction model and the combination of three foreca...
Keywords:short term wind speed prediction  persistence  artificial neural network  support vector machine  combined prediction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号