首页 | 本学科首页   官方微博 | 高级检索  
     

全卷积神经网络图像语义分割方法综述
引用本文:张鑫,姚庆安,赵健,金镇君,冯云丛. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. DOI: 10.3778/j.issn.1002-8331.2109-0091
作者姓名:张鑫  姚庆安  赵健  金镇君  冯云丛
作者单位:长春工业大学 计算机科学与工程学院,长春 130102
基金项目:吉林省科技发展规划重点研发项目;符号计算与知识工程教育部重点实验室开放基金;吉林省教育厅十三五科学技术研究规划项目
摘    要:图像语义分割是计算机视觉领域的热点研究课题,随着全卷积神经网络的迅速兴起,图像语义分割和全卷积神经网络的融合发展取得了非常卓越的成绩.通过对近年来高质量文献的收集,重点对全卷积神经网络图像语义分割方法进行总结.将收集的文献,按照应用场景的不同,划分为经典语义分割、实时性语义分割和RGBD语义分割,对具有代表性的分割方法...

关 键 词:图像语义分割  计算机视觉  全卷积神经网络

Image Semantic Segmentation Based on Fully Convolutional Neural Network
ZHANG Xin,YAO Qing'an,ZHAO Jian,JIN Zhenjun,FENG Yuncong. Image Semantic Segmentation Based on Fully Convolutional Neural Network[J]. Computer Engineering and Applications, 2022, 58(8): 45-57. DOI: 10.3778/j.issn.1002-8331.2109-0091
Authors:ZHANG Xin  YAO Qing'an  ZHAO Jian  JIN Zhenjun  FENG Yuncong
Affiliation:School of Computer Science and Engineering, Changchun University of Technology, Changchun 130102, China
Abstract:Image semantic segmentation is a hot research topic in the field of computer vision. With the rapid rise of fully convolutional neural networks, the development of fusion of image semantic segmentation and fully convolutional networks has shown very bright results. Through the collection of high-quality literature in recent years, the focus is on the summary of full convolutional neural network image semantic segmentation methods. The collected literature is divided into classical semantic segmentation, real-time semantic segmentation and RGBD semantic segmentation according to the application scenarios, and then the representative segmentation methods are described. Commonly used public datasets and evaluation metrics for performance are also summarized, and experiments on commonly used datasets are analyzed and summarized. Finally, the possible future research directions of fully convolutional neural networks are prospected.
Keywords:image semantic segmentation  computer vision  fully convolutional neural network  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号