Conception of Stretchable Resistive Memory Devices Based on Nanostructure‐Controlled Carbohydrate‐block‐Polyisoprene Block Copolymers |
| |
Authors: | Chih‐Chien Hung Yu‐Cheng Chiu Hung‐Chin Wu Chien Lu Cécile Bouilhac Issei Otsuka Sami Halila Redouane Borsali Shih‐Huang Tung Wen‐Chang Chen |
| |
Affiliation: | 1. Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan;2. Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan;3. Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan;4. Institut Charles Gerhardt, Université Montpellier, Montpellier Cedex 5, France;5. Grenoble Alpes University, CNRS, Grenoble Cedex 9, France |
| |
Abstract: | It is discovered that the memory‐type behaviors of novel carbohydrate‐block ‐polyisoprene (MH‐b ‐PI) block copolymers‐based devices, including write‐once‐read‐many‐times, Flash, and dynamic‐random‐access‐memory, can be easily controlled by the self‐assembly nanostructures (vertical cylinder, horizontal cylinder, and order‐packed sphere), in which the MH and PI blocks, respectively, provide the charge‐trapping and stretchable function. With increasing the flexible PI block length, the stretchability of the designed copolymers can be significantly improved up to 100% without forming cracks. Thus, intrinsically stretchable resistive memory devices (polydimethylsiloxane(PDMS)/carbon nanotubes(CNTs)/MH‐b ‐PI thin film/Al) using the MH‐b ‐PI thin film as an active layer is successfully fabricated and that using the MH‐b ‐PI12.6k under 100% strain exhibits an excellent ON/OFF current ratio of over 106 (reading at ?1 V) with stable V set around ?2 V. Furthermore, the endurance characteristics can be maintained over 500 cycles upon 40% strain. This work establishes and represents a novel avenue for the design of green carbohydrate‐derived and stretchable memory materials. |
| |
Keywords: | block copolymers carbohydrates elastomer resistive memory stretchable electronics |
|
|