首页 | 本学科首页   官方微博 | 高级检索  
     


Significant Enhancement of Proton Transport in Bioinspired Peptide Fibrils by Single Acidic or Basic Amino Acid Mutation
Authors:Ohad Silberbush  Moran Amit  Subhasish Roy  Nurit Ashkenasy
Affiliation:1. Department of Materials Engineering, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel;2. The Ilse Katz Institute for Nanoscale Science and Technology, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel
Abstract:Bioinspired materials are extremely suitable for the development of biocompatible and environmentally friendly functional materials. Peptide‐based assemblies are remarkably attractive for such tasks, since they provide a simple way to fuse together functional and structural protein motifs in artificial materials. Motivated by this idea, it is shown here that the introduction of a single acidic, or basic, amino acid into the side chain of a heptameric self‐assembling peptide increases proton conduction in the resulting fibers by two orders of magnitude. This self‐doping effect is much more pronounced than the effect induced by the peptide's acidic and basic termini groups. Furthermore, the self‐doping process is found to be significantly more effective for acidic side chains than for basic ones due to both much more effective self‐doping process, resulting in an order of magnitude larger concentration of charge carriers for the acidic assemblies, and higher mobility of the formed charge carriers – almost threefolds in this case. This work facilitates the realization of unique bioinspired self‐assembled proton conducting materials that may find uses in the emerging bioprotonic technology. The presented design flexibility and, in particular, the ability to introduce both proton and proton holes further extend the usefulness of these materials.
Keywords:bioelectronics  bioinspired materials  proton conduction  self‐assembled‐peptide fibrils
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号