Affiliation: | 1. Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, Strasbourg, France;2. Synchrotron SOLEIL, L'Orme des Merisiers, Gif‐sur‐Yvette, France;3. CEMES, Université de Toulouse, Toulouse, France;4. Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany;5. Institut Jean Lamour UMR 7198 CNRS, Université de Lorraine, Vandoeuvre les Nancy Cedex, France;6. CNRS – C2N/Site de Marcoussis, Marcoussis, France |
Abstract: | Spin‐polarized charge transfer at the interface between a ferromagnetic (FM) metal and a molecule can lead to ferromagnetic coupling and to a high spin polarization at room temperature. The magnetic properties of these interfaces can not only alter those of the ferromagnet but can also stabilize molecular spin chains with interesting opportunities toward quantum computing. With the aim to enhance an organic spintronic device's functionality, external control over this spin polarization may thus be achieved by altering the ferromagnet/molecule interface's magnetic properties. To do so, the magnetoelectric properties of an underlying ferroelectric/ferromagnetic interface are utilized. Switching the ferroelectric polarization state of a PbZr0.2Ti0.8O3 (PZT) bottom layer within a PZT/Co/FePc‐based (Pc ‐ phthalocyanine) device alters the X‐ray magnetic circular dichroism of the Fe site within the phthalocyanine molecular top layer. Thus, how to electrically alter the magnetic properties of an interface with high spin polarization at room temperature is demonstrated. This expands electrical control over spin‐polarized FM/molecule interfaces, which is first demonstrated using ferroelectric molecules, to all molecular classes. |