Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species |
| |
Authors: | Chao Yin Houjuan Zhu Chen Xie Lei Zhang Peng Chen Quli Fan Wei Huang Kanyi Pu |
| |
Affiliation: | 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China;2. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore;3. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China |
| |
Abstract: | Hypochlorite (ClO?) as a highly reactive oxygen species not only acts as a powerful “guarder” in innate host defense but also regulates inflammation‐related pathological conditions. Despite the availability of fluorescence probes for detection of ClO? in cells, most of them can only detect ClO? in single cellular organelle, limiting the capability to fully elucidate the synergistic effect of different organelles on the generation of ClO?. This study proposes a nanoprobe cocktail approach for multicolor and multiorganelle imaging of ClO? in cells. Two semiconducting oligomers with different π‐conjugation length are synthesized, both of which contain phenothiazine to specifically react with ClO? but show different fluorescent color responses. These sensing components are self‐assembled into the nanoprobes with the ability to target cellular lysosome and mitochondria, respectively. The mixture of these nanoprobes forms a nano‐cocktail that allows for simultaneous imaging of elevated level of ClO? in lysosome and mitochondria according to fluorescence color variations under selective excitation of each nanoprobe. Thus, this study provides a general concept to design probe cocktails for multilocal and multicolor imaging. |
| |
Keywords: | activatable probes fluorescence imaging nanoparticles reactive oxygen species |
|
|