首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVR-GA模型的浆态管流压力差的预测
引用本文:S.K. Lahiri,K.C. Ghanta. 基于SVR-GA模型的浆态管流压力差的预测[J]. 中国化学工程学报, 2008, 16(6): 841-848. DOI: 10.1016/S1004-9541(09)60003-3
作者姓名:S.K. Lahiri  K.C. Ghanta
作者单位:Department of Chemical Engineering, NIT, Durgapur, West Bengal, India
摘    要:This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.

关 键 词:support vector regression  genetic algorithm  slurry pressure drop  
收稿时间:2008-04-18
修稿时间:2008-4-18 

Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model
S.K. Lahiri,K.C. Ghanta. Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model[J]. Chinese Journal of Chemical Engineering, 2008, 16(6): 841-848. DOI: 10.1016/S1004-9541(09)60003-3
Authors:S.K. Lahiri  K.C. Ghanta
Affiliation:Department of Chemical Engineering, NIT, Durgapur, West Bengal, India
Abstract:This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.
Keywords:support vector regression  genetic algorithm  slurry pressure drop
本文献已被 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号