首页 | 本学科首页   官方微博 | 高级检索  
     

基于形态非抽样小波的实时图像融合方法
引用本文:邓苗,张基宏,柳伟,梁永生. 基于形态非抽样小波的实时图像融合方法[J]. 计算机应用, 2012, 32(10): 2809-2813. DOI: 10.3724/SP.J.1087.2012.02809
作者姓名:邓苗  张基宏  柳伟  梁永生
作者单位:1. 深圳大学 信息工程学院,广东 深圳 5180602. 深圳信息职业技术学院 可视媒体处理与传输深圳市重点实验室,广东 深圳 5180293. 广东深圳信息职业技术学院
基金项目:国家自然科学基金资助项目(61271420);广东省自然科学基金资助项目(S2012020011034)
摘    要:提出一种适合实时图像融合的形态非抽样小波(MUDW)变换,该变换采用膨胀和腐蚀操作的平均值作为分解过程中的分析算子,以相邻尺度图像之间的差作为细节图像,使尺度刻画更精细,细节描述更准确;采用随尺度增加而大小递增的结构元素,使尺度间差异更大,应用于图像融合可得到更好的图像融合效果。相比现有的实时图像融合方法,因为膨胀和腐蚀操作的便捷性,所以具有更高的实时性。通过实验证明了该方法具有良好的多尺度分解特性,取得了更好的融合效果;进一步在重构时设立增强因子能显著增强融合图像的效果。因此,在实时图像融合上具有较强的应用价值。

关 键 词:形态小波  图像融合  非抽样  多尺度  实时性  
收稿时间:2012-04-10
修稿时间:2012-05-15

Real-time image fusion based on morphological un-decimated wavelets
DENG Miao,ZHANG Ji-hong,LIU Wei,LIANG Yong-sheng. Real-time image fusion based on morphological un-decimated wavelets[J]. Journal of Computer Applications, 2012, 32(10): 2809-2813. DOI: 10.3724/SP.J.1087.2012.02809
Authors:DENG Miao  ZHANG Ji-hong  LIU Wei  LIANG Yong-sheng
Affiliation:1. College of Information Engineering, Shenzhen University, Shenzhen Guangdong 518060, China2. Shenzhen Key Laboratory of Visual Media Processing and Transmission Shenzhen, Institute of Information Technology,  Shenzhen Guangdong 518029, China3. 4. Shenzhen Key Laboratory of Visual Media Processing and Transmission Shenzhen, Institute of Information Technology, Shenzhen Guangdong 518029, China
Abstract:An efficient Morphological Un-Decimated Wavelet(MUDW) transform with more delicate and accurate multi-scale decomposition performance that suites real-time image fusion was proposed.It took the average of dilation and erosion as the analysis operator,and the difference of adjacent scale images as the detail image.Size-increasing structure elements were adopted to get better fusion result.Due to the simplicity of dilation and erosion operator,computation time is shorter than other real-time algorithms.Furthermore,a factor was added during reconstruction,to obtain an obvious enhancement effect.The experimental results show that the new method outperforms other real-time algorithms.
Keywords:morphological wavelet  image fusion  un-decimated  multi-scale  real-time
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号