首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子滤波和Mean-shift的跟踪算法
引用本文:蒋 旻,许 勤,尚 涛,高伟义. 基于粒子滤波和Mean-shift的跟踪算法[J]. 计算机工程, 2010, 36(5): 21-22,25
作者姓名:蒋 旻  许 勤  尚 涛  高伟义
作者单位:(1. 武汉科技大学计算机科学与技术学院,武汉 430081;2. 武汉科技大学信息科学与工程学院,武汉 430081)
基金项目:基金项目:国家自然科学基金资助项目“动态场景下的图像超分辨率重建”(60705012/F030404);武汉科技大学科学基金资助项目(2008TD04)
摘    要:粒子滤波作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势。基于此,提出一种基于粒子滤波和Mean-shift的混合跟踪算法(KMSEPF)。KMSEPF算法对一般的Mean-shift和粒子滤波混合算法进行改进。结果证明,KMSEPF算法与混合算法MSEPF相比,在计算效率提高的同时,跟踪准确性和处理遮挡的能力没有下降。

关 键 词:粒子滤波  Mean—shift算法  目标跟踪
修稿时间: 

Tracking Algorithm Based on Particle Filtering and Mean-shift
JIANG Min,XU Qin,SHANG Tao,GAO Wei-yi. Tracking Algorithm Based on Particle Filtering and Mean-shift[J]. Computer Engineering, 2010, 36(5): 21-22,25
Authors:JIANG Min  XU Qin  SHANG Tao  GAO Wei-yi
Affiliation:1 (1. College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081; 2. College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081)
Abstract:As an algorithm based on Bayesian estimation, particle filtering is predominant on tracking nonlinear moving target. This paper proposes an algorithm, which is based on Mean-shift and particle filtering, named K-means and Mean-shift Embedded Particle Filter(KMSEPF). The KMSEPF algorithm improves the general mixture algorithms which are based on particle filtering and Mean-shift. Results show that the algorithm reduces the computation complexity, while maintains the high precision and the ability to control the occlusion, compared with the MSEPF algorithm.
Keywords:particle filtering  Mean-shift algorithm  object tracking
本文献已被 维普 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号