首页 | 本学科首页   官方微博 | 高级检索  
     

用于过程故障诊断的自适应kernel学习网络分类器
引用本文:王海清,蒋宁. 用于过程故障诊断的自适应kernel学习网络分类器[J]. 化工学报, 2007, 58(9): 2276-2280
作者姓名:王海清  蒋宁
作者单位:浙江大学工业控制技术国家重点实验室,工业控制研究所,浙江,杭州,310027;浙江工业大学化工机械设计研究所,浙江,杭州,310032
基金项目:国家自然科学基金 , 教育部留学回国人员科研启动基金
摘    要:提出一种统一的最小二乘kernel学习框架,将自适应kernel学习(AKL)网络辨识器推广为分类器,用于化工过程的故障诊断。推导了AKL分类器在向后缩减和向前增长两种情况下的递推算法,实现了对记忆样本长度的控制。该分类器无需利用历史故障数据,即可进行在线学习并建立过程诊断模型。通过对Tennessee Eastman(TE)过程的5种典型故障的诊断分析,验证了该方法的有效性。

关 键 词:过程诊断  模式分类器  统计学习理论
文章编号:0438-1157(2007)09-2276-05
收稿时间:2006-09-18
修稿时间:2006-09-18

Adaptive kernel learning classifier with application to process fault diagnosis
WANG Haiqing,JIANG Ning. Adaptive kernel learning classifier with application to process fault diagnosis[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9): 2276-2280
Authors:WANG Haiqing  JIANG Ning
Affiliation:State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, Zhejiang, China; z Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
Abstract:An adaptive kernel learning(AKL) network classifier,as a natural extension of AKL identifier,was proposed based on the unified least-square kernel learning(ULK) framework.The backward decreasing and forward increasing algorithms of AKL classifier were derived,both in recursive forms.The memory length of the classifier was thus under control so as to quickly adapt to the change of process dynamics.The AKL classifier did not require the support from the historical fault database and can learn from the beginning of the process operation.Numerical simulations for diagnosis of Tennessee Eastman(TE) process showed that the proposed ULK framework and the resulting AKL classifier were valid,and satisfying diagnosis performance was observed.
Keywords:process diagnosis  pattern classifier  statistical learning theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号