首页 | 本学科首页   官方微博 | 高级检索  
     

微米级水雾准等温压缩方法的能耗分析
引用本文:王佳,贾冠伟,许未晴,蔡茂林. 微米级水雾准等温压缩方法的能耗分析[J]. 液压与气动, 2018, 0(6): 113-118
作者姓名:王佳  贾冠伟  许未晴  蔡茂林
作者单位:1. 北京航空航天大学自动化科学与电气工程学院, 北京100191; 2. 气动热力储能与供能北京市重点实验室, 北京100191
基金项目:国家自然科学基金(51605013)
摘    要:由于多数压缩空气系统都基于绝热压缩,大约有一半的电力被转化成了热量并耗散。由于压缩时空气的温度上升,并转化得到更多的热,使压缩效率降低。将微米级(19~38 μm)水雾喷入压缩空气与之混合,吸收空气热量,降低压缩空气温度。在不同喷嘴有效直径产生的微米级水雾冷却压缩的条件下,仿真分析了空气温度、压力、压缩功及压缩效率的变化特性。计算并优化设计了水雾冷却准等温压缩的水雾临界能耗线和极值能耗线,为水雾冷却准等温压缩系统的设计提供了有效的判断标准。

关 键 词:微米级水雾  换热  压缩效率  准等温压缩  
收稿时间:2017-11-29

Energy Consumption Analysis of Quasi isothermal Compression Method for Micron sized Water Spray
WANG Jia,JIA Guan-wei,XU Wei-qing,CAI Mao-lin. Energy Consumption Analysis of Quasi isothermal Compression Method for Micron sized Water Spray[J]. Chinese Hydraulics & Pneumatics, 2018, 0(6): 113-118
Authors:WANG Jia  JIA Guan-wei  XU Wei-qing  CAI Mao-lin
Affiliation:1. School of Automatic Control and Electronic Engineering, Beihang University, Beijing100191;2. Pneumatic and Thermodynamic Energy Storage and Supply Beijing Key Laboratory, Beijing100191
Abstract:Since most compressed air systems are based on adiabatic compression, about half of the electricity is converted into heat and dissipated. As the temperature of air rises during compression, more energy is converted into heat and efficiency of compression is reduced. Micrometer (19~38 μm) water spray is mixed with the compressed air to absorb air heat and reduce compressed air temperature. Under conditions of micro scale water mist cooling and compression generated by different nozzle effective diameters, the characteristics of air temperature, pressure, compression work and compression efficiency are simulated and analyzed. The critical energy and extreme energy consumption lines of quasi isothermal compression water mist are calculated and optimized. It provides an effective criterion for design of water mist cooling quasi isothermal compression system.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《液压与气动》浏览原始摘要信息
点击此处可从《液压与气动》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号