首页 | 本学科首页   官方微博 | 高级检索  
     

基于Faster R-CNN的诱导维修自动交互设计
引用本文:罗又文,王崴,瞿珏. 基于Faster R-CNN的诱导维修自动交互设计[J]. 计算机工程与应用, 2019, 55(12): 181-187. DOI: 10.3778/j.issn.1002-8331.1812-0002
作者姓名:罗又文  王崴  瞿珏
作者单位:空军工程大学 防空反导学院,西安,710051;空军工程大学 防空反导学院,西安,710051;空军工程大学 防空反导学院,西安,710051
摘    要:随着增强现实技术在机械领域的发展,已经有越来越多的例子证明了AR在工业维修方面提高操作效率的优越性。为了提高诱导维修操作过程的效率,针对传统的增强现实维修系统不能对维修状态进行感知和判断的问题,提出了一种基于快速区域卷积神经网络(Faster R-CNN)的进程识别自动交互方法。该方法基于Faster R-CNN建立零件识别的深度神经网络模型并利用反向传播进一步微调,通过对零件的识别输出零件的类型和编号,反馈给系统触发相应的操作步骤,无需用户进行另外的交互操作。实验结果表明,基于深度神经网络的维修零件识别率可达95%,平均识别速度为每帧300ms,满足AR诱导维修系统的精度和交互性要求。

关 键 词:增强现实  深度学习  快速区域卷积神经网络(Faster  R-CNN)  诱导维修  自动交互

Automatic Induced Maintenance Process Interaction Design Based on Faster R-CNN
LUO Youwen,WANG Wei,QU Jue. Automatic Induced Maintenance Process Interaction Design Based on Faster R-CNN[J]. Computer Engineering and Applications, 2019, 55(12): 181-187. DOI: 10.3778/j.issn.1002-8331.1812-0002
Authors:LUO Youwen  WANG Wei  QU Jue
Affiliation:Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
Abstract:With the development of augmented reality technology in the field of machinery, more and more examples have proved the superiority of AR in improving the operational efficiency in industrial maintenance. In order to improve the efficiency of the induced maintenance operation process, an automatic interaction of process recognition based on Faster Regional Convolutional Neural Network(Faster R-CNN) is proposed for the problem that the traditional augmented reality maintenance system cannot sense and judge the maintenance status. The method is based on Faster R-CNN to establish a deep neural network model for part recognition and further fine-tuning by means of back propagation. By identifying the type and number of the parts, the feedback is given to the system to trigger the corresponding operation steps without additional interaction by the user operating. The experimental results show that the recognition rate of repair parts based on deep neural network can reach 95%, and the average recognition speed is 300 ms per frame, which meets the accuracy and interactivity requirements of AR-induced maintenance system.
Keywords:augmented reality  deep learning  Faster Regional Convolutional Neural Network(Faster R-CNN)  induced maintenance  automatic interaction  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号