首页 | 本学科首页   官方微博 | 高级检索  
     


A Recurrent Attention and Interaction Model for Pedestrian Trajectory Prediction
Xuesong Li, Yating Liu, Kunfeng Wang and Fei-Yue Wang, "A Recurrent Attention and Interaction Model for Pedestrian Trajectory Prediction," IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1361-1370, Sept. 2020. doi: 10.1109/JAS.2020.1003300
Authors:Xuesong Li  Yating Liu  Kunfeng Wang  Fei-Yue Wang
Abstract:The movement of pedestrians involves temporal continuity, spatial interactivity, and random diversity. As a result, pedestrian trajectory prediction is rather challenging. Most existing trajectory prediction methods tend to focus on just one aspect of these challenges, ignoring the temporal information of the trajectory and making too many assumptions. In this paper, we propose a recurrent attention and interaction (RAI) model to predict pedestrian trajectories. The RAI model consists of a temporal attention module, spatial pooling module, and randomness modeling module. The temporal attention module is proposed to assign different weights to the input sequence of a target, and reduce the speed deviation of different pedestrians. The spatial pooling module is proposed to model not only the social information of neighbors in historical frames, but also the intention of neighbors in the current time. The randomness modeling module is proposed to model the uncertainty and diversity of trajectories by introducing random noise. We conduct extensive experiments on several public datasets. The results demonstrate that our method outperforms many that are state-of-the-art. 
Keywords:Deep learning   long short-term memory (LSTM)   recurrent attention and interaction (RAI) model   trajectory prediction
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号