首页 | 本学科首页   官方微博 | 高级检索  
     


A Mode-Switching Motion Control System for Reactive Interaction and Surface Following Using Industrial Robots
Danial Nakhaeinia, Pierre Payeur and Robert Laganière, "A Mode-Switching Motion Control System for Reactive Interaction and Surface Following Using Industrial Robots," IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 670-682, Mar. 2018. doi: 10.1109/JAS.2018.7511069
Authors:Danial Nakhaeinia  Pierre Payeur  Robert Laganière
Affiliation:School of Electrical Engineering and Computer Science, University of Ottawa, Ontario K1N6N5, Canada
Abstract:This work proposes a sensor-based control system for fully automated object detection and exploration (surface following) with a redundant industrial robot. The control system utilizes both offline and online trajectory planning for reactive interaction with objects of different shapes and color using RGBD vision and proximity/contact sensors feedback where no prior knowledge of the objects is available. The RGB-D sensor is used to collect raw 3D information of the environment. The data is then processed to segment an object of interest in the scene. In order to completely explore the object, a coverage path planning technique is proposed using a dynamic 3D occupancy grid method to generate a primary (offline) trajectory. However, RGB-D sensors are very sensitive to lighting and provide only limited accuracy on the depth measurements. Therefore, the coverage path planning is then further assisted by a real-time adaptive path planning using a fuzzy self-tuning proportional integral derivative (PID) controller. The latter allows the robot to dynamically update the 3D model by a specially designed instrumented compliant wrist and adapt to the surfaces it approaches or touches. A modeswitching scheme is also proposed to efficiently integrate and smoothly switch between the interaction modes under certain conditions. Experimental results using a CRS-F3 manipulator equipped with a custom-built compliant wrist demonstrate the feasibility and performance of the proposed method. 
Keywords:Adaptive control   fuzzy-PID controller   manipulator control   motion planning   surface following
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号