首页 | 本学科首页   官方微博 | 高级检索  
     


Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization
Zhiming Lv, Linqing Wang, Zhongyang Han, Jun Zhao and Wei Wang, "Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization," IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 838-849, May 2019. doi: 10.1109/JAS.2019.1911450
Authors:Zhiming Lv  Linqing Wang  Zhongyang Han  Jun Zhao  Wei Wang
Abstract:For multi-objective optimization problems, particle swarm optimization (PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space (the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, begin{document}$ varepsilon $end{document}-Pareto active learning (begin{document}$ varepsilon $end{document}-PAL) method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter begin{document}$ varepsilon $end{document}. Therefore, a greedy search method is presented to determine the value of begin{document}$ varepsilon $end{document} where the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines (MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization (MOPSO) algorithms.
Keywords:Multiobjective optimization   Pareto active learning   particle swarm optimization (PSO)   surrogate
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号