首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于模糊信息熵的协同过滤推荐方法
引用本文:林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. DOI: 10.6040/j.issn.1672-3961.1.2016.165
作者姓名:林耀进  张佳  林梦雷  王娟
作者单位:闽南师范大学计算机学院, 福建 漳州 363000
基金项目:国家自然科学基金资助项目(61303131);福建省高校新世纪优秀人才支持计划;福建省高校杰出青年科研人才培养计划资助项目(JA14192)
摘    要:针对评分数据的稀疏性制约协同过滤推荐性能的情况,提出一种新的相似性度量方法。首先,定义了用户的模糊信息熵以反映用户评分偏好的不确定程度;其次,利用两两用户的模糊互信息衡量用户之间的相似程度;最后,同时考虑用户之间的模糊互信息和用户的模糊信息熵,并设计一种基于模糊信息熵的相似性度量方法以计算用户之间的相似性。在两个公开数据集上的试验结果表明:基于模糊信息熵的相似性度量方法能够降低数据稀疏性的影响,并能显著提高推荐系统的推荐性能。

关 键 词:协同过滤  数据稀疏性  模糊互信息  相似性  模糊信息熵  
收稿时间:2016-03-01

A method of collaborative filtering recommendation based on fuzzy information entropy
LIN Yaojin,ZHANG Jia,LIN Menglei,WANG Juan. A method of collaborative filtering recommendation based on fuzzy information entropy[J]. Journal of Shandong University of Technology, 2016, 46(5): 13-20. DOI: 10.6040/j.issn.1672-3961.1.2016.165
Authors:LIN Yaojin  ZHANG Jia  LIN Menglei  WANG Juan
Affiliation:School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China
Abstract:The performance of collaborative filtering was restricted by the sparsity of rating data. To solve this problem, a novel similarity measure based on fuzzy mutual information was proposed. First, the definition of user fuzzy information entropy was given to reflect the uncertainty degree of rating preference. Then, the fuzzy mutual information between users was introduced to measure the similarity degree between users. Finally, the fuzzy information entropy based on similarity measure method was designed to calculate the similarity between users by considering not only the fuzzy mutual information between users but also user fuzzy information entropy. Experimental results on two benchmark data sets showed that the fuzzy information entropy based similarity measure method could reduce the influence of the data sparsity, and the recommendation performance of systems had significant improvements.
Keywords:data sparsity  fuzzy information entropy  fuzzy mutual information  collaborative filtering  similarity  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号