首页 | 本学科首页   官方微博 | 高级检索  
     

考虑任务行程时间的多载量自动导引车系统防死锁任务调度
引用本文:武星,翟晶晶,楼佩煌,胡亚,肖海宁. 考虑任务行程时间的多载量自动导引车系统防死锁任务调度[J]. 中国机械工程, 2021, 32(23): 2840-2849. DOI: 10.3969/j.issn.1004-132X.2021.23.008
作者姓名:武星  翟晶晶  楼佩煌  胡亚  肖海宁
作者单位:1.南京航空航天大学机电学院,南京,2100162.盐城工学院机械工程学院,盐城,224051
基金项目:国家自然科学基金(61973154,52005427);国防基础科研计划(JCKY2018605C004);中央高校基本科研业务费专项资金(NS2019033);江苏省高校自然科学基金(19KJB510013)
摘    要:针对多载量自动导引车(AGV)系统的任务调度和缓冲区死锁问题,提出了考虑任务行程时间的防死锁任务调度方案。以最小化延迟率和交通负荷不均衡度为目标,建立了任务调度模型;分析了任务调度中的实际约束,并在任务行程时间约束下构建了预测模型;针对任务调度模型,提出了一种基于人工免疫-灰狼优化(AI-GWO)算法的多目标防死锁任务调度方法,利用死锁避免规则禁止即将引发工位缓冲区死锁的任务运行,并融合AI-GWO算法对任务执行顺序进行多目标优化;最后,根据AGV负载均衡度进行AGV任务分配。仿真结果表明,上述任务行程时间预测模型具有较高的准确率,任务调度模型及防死锁调度方法具有较好的优化性能和计算效率,从而显著提高了物流系统的任务准时率和路径网络的交通负荷均衡度。

关 键 词:自动导引车  任务调度  多目标优化  任务行程时间  人工免疫-灰狼优化算法  

Deadlock-free Task Scheduling with Task Traveling Time for a Multi-load AGV System
WU Xing,ZHAI Jingjing,LOU Peihuang,HU Ya,XIAO Haining. Deadlock-free Task Scheduling with Task Traveling Time for a Multi-load AGV System[J]. China Mechanical Engineering, 2021, 32(23): 2840-2849. DOI: 10.3969/j.issn.1004-132X.2021.23.008
Authors:WU Xing  ZHAI Jingjing  LOU Peihuang  HU Ya  XIAO Haining
Affiliation:1.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,2100162.College of Mechanical Engineering,Yancheng Institute of Technology,Yancheng,Jiangsu,224051
Abstract:In order to solve the problems of task scheduling and buffer deadlock for a multi-load AGV system,a deadlock-free task scheduling scheme with task traveling time was proposed.Firstly,the task scheduling model was established with the objective of minimizing the delay rate and the imbalance degree of traffic loads.Secondly,the practical constraints in task scheduling were analyzed,and a prediction model was developed under the constraint of task traveling time.Thirdly,a multi-objective deadlock-free task scheduling method was proposed based on the AI-GWO algorithm for the task scheduling model.Deadlock prevention rules were used to prohibit tasks that would cause the buffer deadlock of workstations, and the AI-GWO algorithm was combined to perform the multi-objective optimization for the operation sequence of tasks.Finally,the tasks were assigned to different AGVs according to the balance degree of AGV loads.The simulation results show that the task-traveling time prediction model achieves high accuracy,and the task scheduling model and the deadlock-free scheduling method have the satisfactory optimization performance and computation efficiency.Therefore,the task punctuality rate of the material handling systems and the traffic-load balance degree of the path network are improved significantly.
Keywords:automated guided vehicle(AGV)   task scheduling   multi-objective optimization   task traveling time   artificial immune-grey wolf optimization(AI-GWO) algorithm  
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号