首页 | 本学科首页   官方微博 | 高级检索  
     


Convolutional Sparse Coding for High Dynamic Range Imaging
Authors:Ana Serrano  Felix Heide  Diego Gutierrez  Gordon Wetzstein  Belen Masia
Affiliation:1. Universidad de Zaragoza;2. Stanford University;3. MPI Informatik
Abstract:Current HDR acquisition techniques are based on either (i) fusing multibracketed, low dynamic range (LDR) images, (ii) modifying existing hardware and capturing different exposures simultaneously with multiple sensors, or (iii) reconstructing a single image with spatially‐varying pixel exposures. In this paper, we propose a novel algorithm to recover high‐quality HDRI images from a single, coded exposure. The proposed reconstruction method builds on recently‐introduced ideas of convolutional sparse coding (CSC); this paper demonstrates how to make CSC practical for HDR imaging. We demonstrate that the proposed algorithm achieves higher‐quality reconstructions than alternative methods, we evaluate optical coding schemes, analyze algorithmic parameters, and build a prototype coded HDR camera that demonstrates the utility of convolutional sparse HDRI coding with a custom hardware platform.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号