首页 | 本学科首页   官方微博 | 高级检索  
     


Industrial melt index prediction with the ensemble anti‐outlier just‐in‐time Gaussian process regression modeling method
Authors:Yi Liu  Zengliang Gao
Affiliation:Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
Abstract:Several data‐driven soft sensors have been applied for online quality prediction in polymerization processes. However, industrial data samples often follow a non‐Gaussian distribution and contain some outliers. Additionally, a single model is insufficient to capture all of the characteristics in multiple grades. In this study, the support vector clustering (SVC)‐based outlier detection method was first used to better handle the nonlinearity and non‐Gaussianity in data samples. Then, SVC was integrated into the just‐in‐time Gaussian process regression (JGPR) modeling method to enhance the prediction reliability. A similar data set with fewer outliers was constructed to build a more reliable local SVC–JGPR prediction model. Moreover, an ensemble strategy was proposed to combine several local SVC–JGPR models with the prediction uncertainty. Finally, the historical data set was updated repetitively in a reasonable way. The prediction results in the industrial polymerization process show the superiority of the proposed method in terms of prediction accuracy and reliability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41958.
Keywords:applications  manufacturing  properties and characterization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号