首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and characterization of flame retardant phase change materials by microencapsulated paraffin and diethyl ethylphosphonate with poly(methacrylic acid‐co‐ethyl methacrylate) shell
Authors:Xiaolin Qiu  Lixin Lu  Zhenzhen Chen
Affiliation:Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, China
Abstract:Microcapsules containing paraffin and diethyl ethylphosphonate (DEEP) flame retardant with uncrosslinked and crosslinked poly (methacrylic acid‐co‐ethyl methacrylate) (P(MAA‐co‐EMA)) shell were fabricated by suspension‐like polymerization. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy. The thermal properties and thermal stabilities of the microPCMs were investigated by differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The flame retarding performances of the microcapsule‐treated foams were calculated by using an oxygen index instrument. The DSC results showed that the crosslinking of the polymer shell led to an increase in the melting enthalpies of the microcapsule by more than 15%. The crosslinked P(MAA‐co‐EMA) microcapsules with DEEP and without DEEP have melting enthalpies of 67.2 and 102.9 J/g, respectively. The TGA results indicated that the thermal resistant temperature of the crosslinked microcapsules with DEEP was up to 171°C, which was higher than that of its uncrosslinked counterpart by ~20°C. The incorporation of DEEP into the microPCM increased the limiting oxygen index value of the microcapsule‐treated foams by over 5%. Thermal images showed that both microcapsule‐treated foams with and without DEEP possessed favorably temperature‐regulated properties. As a result, the microPCMs with paraffin and DEEP as core and P(MAA‐co‐EMA) as shell have good thermal energy storage and thermal regulation potentials, such as thermal‐regulated foams heat insulation materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41880.
Keywords:applications  crosslinking  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号