首页 | 本学科首页   官方微博 | 高级检索  
     

MLAR:面向IP定位的大规模网络别名解析
引用本文:袁福祥,刘粉林,刘翀,刘琰,罗向阳. MLAR:面向IP定位的大规模网络别名解析[J]. 网络与信息安全学报, 2020, 6(4): 77-94. DOI: 10.11959/j.issn.2096-109x.2020044
作者姓名:袁福祥  刘粉林  刘翀  刘琰  罗向阳
作者单位:1. 信息工程大学网络空间安全学院,河南 郑州 450001;2. 数学工程与先进计算国家重点实验室,河南 郑州 450001
基金项目:国家自然科学基金(U1636219);国家自然科学基金(U1736214);国家自然科学基金(U1804263);国家重点研发计划(2016YFB0801303);国家重点研发计划(2016QY01W0105);河南省科技创新杰出人才计划(184200510018)
摘    要:为准确高效地对接口 IP 进行别名解析,支撑 IP 定位,提出一种大规模网络别名解析算法(MLAR)。基于别名IP与非别名IP的时延、路径、Whois等的统计差异,设计过滤规则,在解析前排除大量不可能存在别名关系的 IP,提高解析的效率;将别名解析转化为分类,构建时延相似度、路径相似度等四维新颖的特征,用于过滤后可能的别名IP和非别名IP的分类。基于CAIDA百万级样本的实验表明,相比 RadarGun、MIDAR、TreeNET,正确率提高 15.8%、4.8%、5.7%,耗时最多降低 77.8%、65.3%、55.2%;在应用于 IP 定位时,SLG、LENCR、PoPG 这 3 种典型定位方法的失败率降低 65.5%、64.1%、58.1%。

关 键 词:别名解析  IP定位  网络拓扑  网络测量  机器学习  

MLAR:large-scale network alias resolution for IP geolocation
Fuxiang YUAN,Fenlin LIU,Chong LIU,Yan LIU,Xiangyang LUO. MLAR:large-scale network alias resolution for IP geolocation[J]. Chinese Journal of Network and Information Security, 2020, 6(4): 77-94. DOI: 10.11959/j.issn.2096-109x.2020044
Authors:Fuxiang YUAN  Fenlin LIU  Chong LIU  Yan LIU  Xiangyang LUO
Affiliation:1. School of Cyberspace Security,Information Engineering University,Zhengzhou 450001,China;2. State Key Laboratory of Mathematical Engineering and Advanced Computing,Zhengzhou 450001,China
Abstract:In order to accurately and efficiently perform alias resolution on interface IP and support IP geolocation,a large-scale network alias resolution algorithm (MLAR) was proposed.Based on the statistical differences in delays,paths,Whois,etc.between alias IP and non-alias IP,before resolution,filtering rules were designed to exclude a large number of IPs that can not be aliases and improve efficiency of resolution,alias resolution was transformed into classification,and four novel features such as delay similarity,path similarity,etc.were constructed for the classification of possible alias IP and non-alias IP after filtering.Experiments based on millions of samples from CAIDA show that compared with RadarGun,MIDAR,and TreeNET,the accuracy is improved by 15.8%,4.8%,5.7%,the time consumption can be reduced by up to 77.8%,65.3%,and 55.2%,when the proposed algorithm is applied to IP geolocation,the failure rates of the three typical geolocation methods such as SLG,LENCR,and PoPG are reduced by about 65.5%,64.1%,and 58.1%.
Keywords:alias resolution  IP geolocation  network topology  network measurement  machine learning  
本文献已被 维普 等数据库收录!
点击此处可从《网络与信息安全学报》浏览原始摘要信息
点击此处可从《网络与信息安全学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号