首页 | 本学科首页   官方微博 | 高级检索  
     

基于用户情景的协同过滤推荐
引用本文:周涛,李华. 基于用户情景的协同过滤推荐[J]. 计算机应用, 2010, 30(4): 1076-1078
作者姓名:周涛  李华
作者单位:重庆大学计算机学院
基金项目:国家“十一五”计划项目(ACA07004)
摘    要:为提高基于项目的协同推荐算法的预测效果,引入用户情景因素。首先计算用户情景因素的相异度矩阵,然后按照用户间相异度大小,采用基于等价相异度矩阵聚类算法对用户进行聚类。在聚类后的用户簇中,选取与目标项目相异度小的项目作为近邻,为用户对目标项目进行评分预测。最后,在标准的MovieLens数据集上进行实验。通过对改进的推荐算法与经典的基于项目的协同推荐算法Slope One进行比较,实验数据表明改进后算法的推荐结果有较大提高。

关 键 词:用户情景  协同推荐  相异度矩阵  等价相异度矩阵  聚类  
收稿时间:2009-10-09
修稿时间:2009-12-07

User context based collaborative filtering recommendation
ZHOU Tao,LI Hua. User context based collaborative filtering recommendation[J]. Journal of Computer Applications, 2010, 30(4): 1076-1078
Authors:ZHOU Tao  LI Hua
Affiliation:College of Computer Science/a>;Chongqing University/a>;Chongqing 400044/a>;China
Abstract:In order to improve the prediction effect of item-based collaborative filtering recommendation algorithm,user context factor was introduced.Firstly the dissimilarity degree matrix of the user context factor was calculated.Then the clustering based on the equivalent dissimilarity degree matrix was adopted to cluster users by dissimilarity value between user and user.After clustering,items that had small dissimilarity value were chosen as neighbors of target item in each user group.These neighbors were used t...
Keywords:user context  Collaborative Filtering (CF)  dissimilarity degree matrix  equivalent dissimilarity degree matrix  clustering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号