首页 | 本学科首页   官方微博 | 高级检索  
     

独立分量分析及其在图像处理中的应用现状
引用本文:郭武,张鹏,王润生. 独立分量分析及其在图像处理中的应用现状[J]. 计算机工程与应用, 2008, 44(23): 172-177. DOI: 10.3778/j.issn.1002-8331.2008.23.053
作者姓名:郭武  张鹏  王润生
作者单位:国防科技大学,ATR实验室,长沙,410073;国防科技大学,ATR实验室,长沙,410073;国防科技大学,ATR实验室,长沙,410073
基金项目:国家部委科技重点实验室基金
摘    要:独立分量分析是一种基于高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,近年来作为信号处理和图像处理领域的强有力的分析处理工具得到广泛的关注和研究。在介绍了独立分量分析的基本概念和各种实现算法及其性能的基础上,综述了独立分量分析在图像处理上的应用,最后结合作者的研究探索,总结了独立分量分析的研究新进展和发展趋势。

关 键 词:独立分量分析  图像处理  盲分离
收稿时间:2008-02-25
修稿时间:2008-5-26 

Independent Component Analysis and its applications in image processing
GUO Wu,ZHANG Peng,WANG Run-sheng. Independent Component Analysis and its applications in image processing[J]. Computer Engineering and Applications, 2008, 44(23): 172-177. DOI: 10.3778/j.issn.1002-8331.2008.23.053
Authors:GUO Wu  ZHANG Peng  WANG Run-sheng
Affiliation:ATR Lab,National University of Defense Technology,Changsha 410073,China
Abstract:Independent Component Analysis(ICA) is a signal analysis method based on signal’s high order cumulants,it can find out the latent independent components in data.With it’s widely applications in signal and image processing,many researches have focus on ICA recently.In this paper,the authors briefly review the theory of independent component analysis and its applications in image processing.After a general introduction to the definitions and models of ICA,the authors discuss in more detail the contrast functions and optimization algorithms of ICA.Then review various applications of ICA in image processing.In the later part of this paper,the future works and the research directions of ICA are reviewed combining to the works of the author.
Keywords:Independent Component Analysis(ICA)  image processing  blind source separation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号