首页 | 本学科首页   官方微博 | 高级检索  
     

一种联合特征值信息的全极化SAR图像监督分类方法
引用本文:邢艳肖,张毅,李宁,王宇,胡桂香. 一种联合特征值信息的全极化SAR图像监督分类方法[J]. 雷达学报, 2016, 5(2): 217-227. DOI: 10.12000/JR16019
作者姓名:邢艳肖  张毅  李宁  王宇  胡桂香
作者单位:1.(中国科学院电子学研究所 北京 1001902.(中国科学院大学 北京 100039)
基金项目:国家自然科学基金优秀青年基金(61422113)
摘    要:基于H/平面的分类器对于具有相似散射类型的地物的分类能力很差,为此该文直接使用特征值特征来进行分类。首先提取特征值特征,并使用一种自适应调整高斯分量个数的高斯混合模型对特征值分布进行较为准确地拟合,然后采用朴素贝叶斯分类器进行初步分类。针对可能存在特征值分布较为相近导致错分的问题,计算每两类地物的特征值分布的相似度,将相似度大于给定阈值的类别对组成相似性表,对于这些相似对再用基于Wishart距离的K近邻分类器进行细分。综合分析机载和星载SAR数据上的实验结果,表明这种方法能够克服基于H/的非监督分类方法对于特征值利用的一些不足,且与基于SVM的分类方法效果相当。 

关 键 词:极化SAR   地物分类   特征值
收稿时间:2016-01-25

Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues
Xing Yanxiao,Zhang Yi,Li Ning,Wang Yu,Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. DOI: 10.12000/JR16019
Authors:Xing Yanxiao  Zhang Yi  Li Ning  Wang Yu  Hu Guixiang
Affiliation:1.(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)2.(University of Chinese Academy of Sciences, Beijing 100039, China)
Abstract:Since classification methods based on H/ space have the drawback of yielding poor classification results for terrains with similar scattering features, in this study, we propose a polarimetric Synthetic Aperture Radar (SAR) image classification method based on eigenvalues. First, we extract eigenvalues and fit their distribution with an adaptive Gaussian mixture model. Then, using the naive Bayesian classifier, we obtain preliminary classification results. The distribution of eigenvalues in two kinds of terrains may be similar, leading to incorrect classification in the preliminary step. So, we calculate the similarity of every terrain pair, and add them to the similarity table if their similarity is greater than a given threshold. We then apply the Wishart distance-based KNN classifier to these similar pairs to obtain further classification results. We used the proposed method on both airborne and spaceborne SAR datasets, and the results show that our method can overcome the shortcoming of the H/-based unsupervised classification method for eigenvalues usage, and produces comparable results with the Support Vector Machine (SVM)-based classification method. 
Keywords:
点击此处可从《雷达学报》浏览原始摘要信息
点击此处可从《雷达学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号