首页 | 本学科首页   官方微博 | 高级检索  
     

模糊粗糙集与SVM的彩铃客户挖掘模型
引用本文:高志军,李懿,姚平,王高飞. 模糊粗糙集与SVM的彩铃客户挖掘模型[J]. 计算机工程与应用, 2013, 49(4): 125-128
作者姓名:高志军  李懿  姚平  王高飞
作者单位:1.黑龙江科技学院 计算机与信息工程学院,哈尔滨 1500272.黑龙江科技学院 经济与管理学院,哈尔滨 150027
基金项目:黑龙江省教育厅人文社会科学项目(No.12514128)
摘    要:针对彩铃业务交易记录较多和客户属性的高维度及混合性的特点,建立了基于信息熵度量的模糊粗集属性约简和RBF-SVM分类的彩铃客户挖掘模型。通过10 折交叉验证,对来自两个地市的营销返回样本,在选择特征数量和分类精度之间的差别与其他5个模型进行了比较分析。实验结果显示此模型获取了相对最高的平均分类精度(80.43%)和最少的平均特征属性(2.5个),有效地约简了属性并改善了分类能力。

关 键 词:信息熵  模糊粗糙集  支持向量机  彩铃客户  

Mining model of color ring customers based on fuzzy rough set and SVM
GAO Zhijun,LI Yi,YAO Ping,WANG Gaofei. Mining model of color ring customers based on fuzzy rough set and SVM[J]. Computer Engineering and Applications, 2013, 49(4): 125-128
Authors:GAO Zhijun  LI Yi  YAO Ping  WANG Gaofei
Affiliation:1.College of Computer and Information Engineering, Heilongjiang Institute of Science & Technology, Harbin 150027, China2.College of Economics and Management, Heilongjiang Institute of Science & Technology, Harbin 150027, China
Abstract:Aimming at the more dealing track record of the color ring operation, and the high-dimensional and hybrid properties of the customers attribute, based on the attribute reduction of fuzzy rough set with information entropy measure, and the RBF-SVM classifier, a new mining model of the color ring customers is built. Combining with the 10-fold cross validation, for the marketing data sets of two regions, the number and accuracy of selected features are compared with the other five models. Experimental results show that this model can obtain the relative and much better average classification accuracy(80.43%), and select the least average feature attribute(2.5), effectively reduce attribute, even improve classification power.
Keywords:information entropy  fuzzy rough set  rbf-svm  color ring customers
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号