首页 | 本学科首页   官方微博 | 高级检索  
     

基于ELM-LSSVM的网络流量预测
引用本文:陈鸿星. 基于ELM-LSSVM的网络流量预测[J]. 计算机工程与应用, 2015, 51(24): 73-77
作者姓名:陈鸿星
作者单位:江西师范大学 数学与信息科学学院,南昌 330022
摘    要:为了对网络流量进行准确预测,针对传统极限学习机的“过拟合”不足,提出一种极限学习机和最小二乘支持向量机相融合的网络流量预测模型(ELM-LSSVM)。该模型通过相空间重构获得网络流量的学习样本,引入最小二乘支持向量机对极限学习进行改进,并对网络流量训练集进行学习,采用仿真实验对模型性能进行测试。结果表明,ELM-LSSVM提高了网络流量的预测精度,实现了网络流量准确预测,并具有较强的实际应用价值。

关 键 词:网络流量  极限学习机  最小二乘支持向量机  相空间重构  

Network traffic prediction based on Extreme Learning Machine and Least Square Support Vec-tor Machine
CHEN Hongxing. Network traffic prediction based on Extreme Learning Machine and Least Square Support Vec-tor Machine[J]. Computer Engineering and Applications, 2015, 51(24): 73-77
Authors:CHEN Hongxing
Affiliation:Institute of Mathematics and Informatics, Jiangxi Normal University, Nanchang 330022, China
Abstract:In order to improve the prediction accuracy, aiming at the defects of the over fitting in extreme learning machine, this paper proposes a novel network traffic prediction model based on Extreme Learning Machine and Least Square Support Vector Machine(ELM-LSSVM). The phase space reconstruction is used to build learning samples of network flow and then the training samples are input to ELM and are learnt in which the Least Squares Support Vector Machine are introduced into Extreme Learning Machine. The simulation experiment is carried out to test the performance. The results show that the proposed model has improved the prediction accuracy of network traffic and has strong practical application value.
Keywords:network traffic  Extreme Learning Machine(ELM)  Least Square Support Vector Machine(LSSVM)  phase space reconstruction  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号