首页 | 本学科首页   官方微博 | 高级检索  
     

基于AFSA-SVM的网络入侵检测模型
引用本文:李玉霞,刘丽,沈桂兰. 基于AFSA-SVM的网络入侵检测模型[J]. 计算机工程与应用, 2013, 49(24): 74-77
作者姓名:李玉霞  刘丽  沈桂兰
作者单位:1.北京联合大学 商务学院,北京 1000252.北京联合大学 生物化学工程学院,北京 100023
摘    要:特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。

关 键 词:特征选择  人工鱼群算法  支持向量机  网络入侵检测  

Network intrusion detection model based on improved Artificial Fish Swarm Algorithmand Support Vector Machine
LI Yuxia,LIU Li,SHEN Guilan. Network intrusion detection model based on improved Artificial Fish Swarm Algorithmand Support Vector Machine[J]. Computer Engineering and Applications, 2013, 49(24): 74-77
Authors:LI Yuxia  LIU Li  SHEN Guilan
Affiliation:1.Business College, Beijing Union University,  Beijing  100025, China2.College of Biochemical Engineering, Beijing Union University, Beijing  100023, China
Abstract:Feature selection is a core problem for network intrusion detection, in order to improve the detection rate of network intrusion, a network intrusion detection model(AFSASVM) is proposed based on Artificial Fish Swarm Algorithm and Support Vector Machine. The feature subset is coded as the position of adult fish, and the detection rate of 5 cross validation for SVM training model is taken as evaluation criteria of the feature subset, and then the fish feeding, clustering and rearend behavior are imitated to find the optimal feature subset. The intrusion detection model is built based on the optimal feature subset. The simula tion experiment is carried out on the KDD CUP 99 data. The results show that, compared with the Particle Swarm Optimization algorithm, Genetic Algorithm and all features, the proposed algorithm has improved detection efficiency and the detection rate of the network intrusion, so it is an efficient intrusion detection model.
Keywords:feature selection  Artificial Fish Swarm Algorithm(AFSA)  Support Vector Machine(SVM)  intrusion detection
本文献已被 维普 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号