首页 | 本学科首页   官方微博 | 高级检索  
     

深度卷积神经网络的多GPU并行框架
引用本文:杨 宁. 深度卷积神经网络的多GPU并行框架[J]. 计算机与现代化, 2016, 0(11): 95. DOI: 10.3969/j.issn.1006-2475.2016.11.017
作者姓名:杨 宁
基金项目:国家自然科学基金青年基金资助项目(61202136)
摘    要:近年来,深度卷积神经网络在图像识别和语音识别等领域被广泛运用,取得了很好的效果。深度卷积神经网络是层数较多的卷积神经网络,有数千万参数需要学习,计算开销大,导致训练非常耗时。针对这种情况,本文提出深度卷积神经网络的多GPU并行框架,设计并实现模型并行引擎,依托多GPU的强大协同并行计算能力,结合深度卷积神经网络在训练中的并行特点,实现快速高效的深度卷积神经网络训练。

关 键 词:深度卷积神经网络   GPU   并行框架   图像识别   大数据  
收稿时间:2016-11-23

Multi-GPU Parallel Framework of Deep Convolutional Neural Networks
YANG Ning. Multi-GPU Parallel Framework of Deep Convolutional Neural Networks[J]. Computer and Modernization, 2016, 0(11): 95. DOI: 10.3969/j.issn.1006-2475.2016.11.017
Authors:YANG Ning
Abstract:In recent years, deep convolutional neural network is widely used in the fields of image recognition and speech recognition, and achieves good results. Deep convolutional neural networks are the convolutional neural networks with multiple layers, tens of millions of parameters need to be learned, and computational overhead is large, so the training is very time-consuming. In view of this situation, we propose a multi-GPU parallel framework of deep convolutional neural networks, design and implement model parallel engine, relying on the powerful collaborative parallel computing ability of multi-GPU, combined with the parallel characteristics of deep convolutional neural networks in training, to achieve fast and efficient deep convolution neural networks training.
Keywords:deep convolutional neural networks   graphic processing unit   parallel framework   image recognition   big data  
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号