首页 | 本学科首页   官方微博 | 高级检索  
     

基于流形学习的新高光谱图像降维算法
引用本文:普晗晔,王斌,张立明. 基于流形学习的新高光谱图像降维算法[J]. 红外与激光工程, 2014, 43(1): 232-237
作者姓名:普晗晔  王斌  张立明
作者单位:1.复旦大学电子工程系,上海200433;
基金项目:国家自然科学基金(41371337);北京师范大学地表过程与资源生态国家重点实验室开放基金(2013-KF-02);上海市教委科研创新项目(13ZZ005);高等学校博士学科点专项科研基金(20110071110018)
摘    要:提出了一种新的基于图像块距离的邻域选择方法,并将其应用于流形学习中,得到一类新的高光谱图像非线性降维算法。该类算法利用高光谱图像物理特性,结合图像的光谱信息和空间信息,在最大限度减小图像信息冗余的基础之上,很好地保持了原始数据集的特性。与其它高光谱图像的降维算法相比,改进的流形学习算法不仅考虑到高光谱图像本身的空间关系,而且利用图像块距离更好地保持了数据点之间的局部特性,从而有效地去除原始数据集光谱维和空间维的冗余信息。实际高光谱数据的实验结果表明,所提出的算法在应用于高光谱图像分类时,与其它方法相比具有更高的分类精度。

关 键 词:高光谱图像   非线性降维   图像块距离   流形学习算法   分类
收稿时间:2013-05-11

New dimensionality reduction algorithms for hyperspectral imagery based on manifold learning
Affiliation:1.Department of Electronic Engineering,Fudan University,Shanghai 200433,China;2.Key Laboratory of Information Science of Electromagnetic Waves(MoE,Fudan University,Shanghai 200433,China
Abstract:A new neighborhood selection method was proposed based on the image patch distance and applied to the manifold learning. Thus, a new nonlinear methods for hyperspectral dimensionality reduction was obtained. Considering the physical characters of hyperspectral imagery, the proposed methods combined both spectral and spatial information and, thus, kept the original characters of dataset well with the less loss in the useful information and less distortion on the data structure. Compared with other dimensionality reduction methods for hyperspectral imagery, the proposed methods can reserve effectively the spatial relationships between observation pixels in hyperspectral imagery after transformation. Meanwhile, the proposed methods can discard efficiently the redundant information of original data sets along both spectral and spatial dimensions. Experimental results on real hyperspectral data demonstrate that the proposed methods have higher classification accuracy than the other methods when applied to the classification of hyperspectral imagery after dimensionality reduction.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《红外与激光工程》浏览原始摘要信息
点击此处可从《红外与激光工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号