首页 | 本学科首页   官方微博 | 高级检索  
     

随机性优化算法有效性定量对比评价方法
引用本文:李鹏飞,石正军. 随机性优化算法有效性定量对比评价方法[J]. 计算机工程与应用, 2014, 50(13): 57-61
作者姓名:李鹏飞  石正军
作者单位:中国工程物理研究院 计算机应用研究所,四川 绵阳 621900
摘    要:针对随机性优化算法寻优结果不可重复的特点,为该类优化算法提供了一种定量对比评价算法有效性的方法。该方法针对单个或一组测试函数的多次优化结果进行统计分析,得到一个能够在概率意义上定量表征不同随机性算法求解单个或一组测试函数的有效性优劣关系的因子。利用该方法,对采用同步或异步全局最优粒子信息更新模式的两种标准粒子群优化算法(PSO)版本进行有效性对比评价,给出了同步和异步模式PSO算法求解无约束单目标连续变量优化问题的有效性优劣关系。

关 键 词:随机性优化算法  有效性评价  粒子群优化算法  

Method to compare effectiveness of stochastic optimization algorithm quantitatively and its implementation
LI Pengfei,SHI Zhengjun. Method to compare effectiveness of stochastic optimization algorithm quantitatively and its implementation[J]. Computer Engineering and Applications, 2014, 50(13): 57-61
Authors:LI Pengfei  SHI Zhengjun
Affiliation:Institute of Computer Application, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
Abstract:To compare effectiveness of different stochastic optimization algorithms quantitatively, a method is proposed, which is based on statistical analysis of multiple independent results of those algorithms solving a set of typical test samples. Probability quantifying the relative superiority of effectiveness of two algorithms is conducted. Using this method, effectiveness comparison of different stochastic optimization algorithms is easy to make. Further, this method is implemented on two patterns of standard Particle Swarm Optimization(PSO) algorithm, in which the global best particle’s information is updated synchronously as well as asynchronously. As a result, a relatively effective pattern of standard PSO algorithm solving unconstrained single-objective optimization problems is advised.
Keywords:stochastic optimization algorithm  effectiveness comparison  Particle Swarm Optimization(PSO)  
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号