首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的中药工艺参数优化研究
引用本文:李 军,黄海宽,曹 琦. 基于支持向量机的中药工艺参数优化研究[J]. 计算机工程与应用, 2007, 43(36): 205-207
作者姓名:李 军  黄海宽  曹 琦
作者单位:南开大学,信息技术科学学院,天津,300171;重庆大学,计算机学院,重庆,400044
摘    要:提出了基于SVM的滴丸生产工艺参数优化方法,较好地预测了滴丸含水量,给出了各工艺参数取值范围,在实际生产中取得了良好效果。理论分析和仿真研究表明,该方法学习速度快、跟踪性能好、泛化能力强、对样本的依赖程度低,比基于BP神经网络的建模具有更好的推广能力。

关 键 词:支持向量机  工艺参数  建模与优化
文章编号:1002-8331(2007)36-0205-03
修稿时间:2007-06-01

Research on optimization of Chinese medicine product parameters based on support vector machine
LI Jun,HUANG Hai-kuan,CAO Qi. Research on optimization of Chinese medicine product parameters based on support vector machine[J]. Computer Engineering and Applications, 2007, 43(36): 205-207
Authors:LI Jun  HUANG Hai-kuan  CAO Qi
Affiliation:1.College of Information Technolgy and Science,Nankai University,Tianjin 300171,China 2.College of Computer,Chongqing University,Chongqing 400044,China
Abstract:This paper introduces a kind of optimizing method of Pipule Manufacturing Process parameters based on the Libsvm,by which the changes of Pipule's containing water are preferably forecasted and the proper process parameters are founded.Theoretical and simulation analysis indicates that this method features high learning speed,good approximation,well generalization ability,and little dependence on the sample set.It has the better performance than the model based on the BP neural network.
Keywords:support vector machine(SVM)  process parameters  modeling and optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号