首页 | 本学科首页   官方微博 | 高级检索  
     


Feature subset selection method for AdaBoost training
Authors:ZHAO San-yuan  SHEN Ting-zhi  SUN Chen-sheng  LIU Peng-zhang  YUE Lei
Affiliation:School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Abstract:The feature-selection problem in training AdaBoost classifiers is addressed in this paper.A working feature subset is generated by adopting a novel feature subset selection method based on the partial least square(PLS)regression,and then trained and selected from this feature subset in Boosting.The experiments show that the proposed PLS-based feature-selection method outperforms the current feature ranking method and the random sampling method.
Keywords:dimensionality reduction  Boosting method  feature subset  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报(英文版)》浏览原始摘要信息
点击此处可从《北京理工大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号