摘 要: | 虽然卷积神经网络(CNN)可以提取局部特征,长短期记忆网络(LSTM)可以提取全局特征,它们都表现出了较好的分类效果,但CNN在获取文本的上下文全局信息方面有些不足,而LSTM容易忽略词语之间隐含的特征信息。因此,提出了用CNN_BiLSTM_Attention 并行模型进行文本情感分类。首先,使用CNN提取局部特征,同时BiLSTM提取带有上下文语义信息的全局特征,之后将两者提取的特征拼接在一起,进行特征融合。这样使得模型既能捕获局部短语级特征,又能捕获上下文结构信息,并对特征词的重要程度,利用注意力机制分配不同权重,进而提高模型的分类效果。通过与单一模型CNN、LSTM等深度神经网络模型的对比,本文所提的CNN_BiLSTM_Attention并行模型在综合评价指标F1 score 和准确率上都有提升,实验结果表明,本文所提模型在文本情感分类任务中取得了较好的结果,比其他神经网络模型有更好的实用价值。
|