首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征融合的文本情感分类
作者姓名:李清旭 张琛 成雪
作者单位:甘肃政法大学 网络空间安全学院
基金项目:国家社会科学基金项目,项目编号:16XXW006;甘肃省高等学校科研项目,项目编号:2015A-114。
摘    要:虽然卷积神经网络(CNN)可以提取局部特征,长短期记忆网络(LSTM)可以提取全局特征,它们都表现出了较好的分类效果,但CNN在获取文本的上下文全局信息方面有些不足,而LSTM容易忽略词语之间隐含的特征信息。因此,提出了用CNN_BiLSTM_Attention 并行模型进行文本情感分类。首先,使用CNN提取局部特征,同时BiLSTM提取带有上下文语义信息的全局特征,之后将两者提取的特征拼接在一起,进行特征融合。这样使得模型既能捕获局部短语级特征,又能捕获上下文结构信息,并对特征词的重要程度,利用注意力机制分配不同权重,进而提高模型的分类效果。通过与单一模型CNN、LSTM等深度神经网络模型的对比,本文所提的CNN_BiLSTM_Attention并行模型在综合评价指标F1 score 和准确率上都有提升,实验结果表明,本文所提模型在文本情感分类任务中取得了较好的结果,比其他神经网络模型有更好的实用价值。

点击此处可从《广东电脑与电讯》浏览原始摘要信息
点击此处可从《广东电脑与电讯》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号