首页 | 本学科首页   官方微博 | 高级检索  
     

基于小样本数据驱动的滚齿工艺参数低碳优化决策方法
引用本文:易茜,柳淳,李聪波,易树平,何爽. 基于小样本数据驱动的滚齿工艺参数低碳优化决策方法[J]. 中国机械工程, 2022, 33(13): 1604-1612. DOI: 10.3969/j.issn.1004-132X.2022.13.011
作者姓名:易茜  柳淳  李聪波  易树平  何爽
作者单位:1.重庆大学机械传动国家重点实验室,重庆,4000442.重庆大学机械与运载工程学院,重庆,400044
基金项目:国家自然科学基金 (52005062);国家重点研发计划(2018YFB1701205)
摘    要:针对实际生产历史数据不足的情况,提出一种基于小样本数据驱动的碳排放预测和多目标优化模型。通过Box-Behnken实验设计收集加工数据后,采用反向传播神经网络建立面向碳排放和加工效率的预测模型,在保证预测精度的同时有效减少模型对数据量的需求。以总碳耗和总时长为优化目标,采用改进的多目标灰狼算法和熵权-逼近理想解排序综合评价法进行了最优工艺参数决策。加工实验验证了提出方法的有效性。

关 键 词:低碳优化  小样本驱动  改进灰狼优化算法  熵权-逼近理想解排序综合评价法  

A Low Carbon Optimization Decision Method for Gear Hobbing Process Parameters Driven by Small Sample Data
YI Qian,LIU Chun,LI Congbo,YI Shuping,HE Shuang. A Low Carbon Optimization Decision Method for Gear Hobbing Process Parameters Driven by Small Sample Data[J]. China Mechanical Engineering, 2022, 33(13): 1604-1612. DOI: 10.3969/j.issn.1004-132X.2022.13.011
Authors:YI Qian  LIU Chun  LI Congbo  YI Shuping  HE Shuang
Affiliation:1.State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing,4000442.College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing,400044
Abstract:Aiming at the shortages of effective historical data in actual manufaction, a carbon emission prediction and multi-objective optimization model driven by small sample data was proposed. The Box-Behnken experimental design was used to collect processing data, and then the back propagation neural network was used to establish a prediction model for carbon emissions and processing efficiency, which ensured the prediction accuracy with less historical sample data. Aiming to optimize the total carbon consumption and makespan, the improved gray wolf optimization algorithm and entropy-TOPSIS comprehensive evaluation were used for determining the optimal processing parameters. Finally, the effectiveness of the proposed method was verified by machining experiments. 
Keywords:low carbon optimization   small sample drive   improved gray wolf optimization algorithm   entropy-(TOPSIS) comprehensive evaluation technology  
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号