首页 | 本学科首页   官方微博 | 高级检索  
     

一种优化的基于增强学习协商策略
引用本文:孙天昊,朱庆生,李双庆,周明强. 一种优化的基于增强学习协商策略[J]. 计算机工程与应用, 2008, 44(30): 24-25. DOI: 10.3778/j.issn.1002-8331.2008.30.007
作者姓名:孙天昊  朱庆生  李双庆  周明强
作者单位:重庆大学 计算机学院,重庆 400030
摘    要:增强学习可以帮助协商Agent选择最优行动实现其最终目标。对基于增强学习的协商策略进行优化,在协商过程中充分利用对手的历史信息,加快协商解的收敛和提高协商解的质量。最后通过实验验证了算法的有效性和可用性。

关 键 词:增强学习  协商策略  协商历史  
收稿时间:2008-07-01
修稿时间:2008-7-28 

Optimized negotiation strategy based on reinforcement learning
SUN Tian-hao,ZHU Qing-sheng,LI Shuang-qing,ZHOU Ming-qiang. Optimized negotiation strategy based on reinforcement learning[J]. Computer Engineering and Applications, 2008, 44(30): 24-25. DOI: 10.3778/j.issn.1002-8331.2008.30.007
Authors:SUN Tian-hao  ZHU Qing-sheng  LI Shuang-qing  ZHOU Ming-qiang
Affiliation:College of Computer,Chongqing University,Chongqing 400030,China
Abstract:Negotiation agent can use reinforcement learning to select its best actions and reach its final goal.This paper proposes an optimized negotiation strategy based on reinforcement learning.In the middle of negotiation process,it makes the best use of the opponent’s negotiation history,in order to quicken the negotiation result convergence and enhance the negotiation result quality.Finally,the algorithm is proved to be effective and practical by experiment.
Keywords:reinforcement learning  negotiation strategy  negotiation history
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号