首页 | 本学科首页   官方微博 | 高级检索  
     


Interphase‐layer effect on deformation of silicone rubber filled with nanosilica particles
Authors:Tadaharu Adachi  Yuki Yamada  Yosuke Ishii
Affiliation:Department of Mechanical Engineering, Toyohashi University of Technology, 1‐1 Hibarigaoka, Tempaku, Toyohashi 441‐8580, Japan
Abstract:The viscoelastic and statically tensile deformation properties of silicone rubber composites filled with nanosilica (300 nm in diameter) and microsilica particles (1.5 μm in diameter) were investigated on the basis of experimental results to clarify the interphase‐layer effect on these properties. The interphase layers formed around the nanoparticles without chemical coating were found to be glassy, even though the composites were in the rubbery state. The interphase layer thickness was determined to be approximately 20 nm using Guth and Gold's mixture law with the viscoelastic properties of the nanoparticle‐filled rubber in the rubbery state. The determined thickness of the interphase layer was confirmed by comparing the maximum strains at fracture for the nanoparticle‐filled rubber, which decreased for higher volume fraction of the nanoparticles. Therefore, the deformation properties were clarified to depend on the volume fraction of the apparent particles composed of the nanoparticles and interphase layers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45880.
Keywords:composites  mechanical properties  viscosity and viscoelasticity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号