首页 | 本学科首页   官方微博 | 高级检索  
     

基于空域与频域关系建模的篡改文本图像检测
引用本文:王裕鑫,张博强,谢洪涛,张勇东. 基于空域与频域关系建模的篡改文本图像检测[J]. 网络与信息安全学报, 2022, 8(3): 29-40. DOI: 10.11959/j.issn.2096-109x.2022035
作者姓名:王裕鑫  张博强  谢洪涛  张勇东
作者单位:中国科学技术大学,安徽 合肥 230026
基金项目:国家自然科学基金(62121002);国家自然科学基金(62022076);国家自然科学基金(U1936210)
摘    要:近年来,篡改文本图像在互联网的广泛传播为文本图像安全带来严重威胁。然而,相应的篡改文本检测(TTD,tamperedtextdetection)方法却未得到充分的探索。TTD任务旨在定位图像中所有文本区域,同时根据纹理的真实性判断文本区域是否被篡改。与一般的文本检测任务不同,TTD任务需要进一步感知真实文本和篡改文本分类的细粒度信息。TTD任务有两个主要挑战:一方面,由于真实文本和篡改文本的纹理具有较高的相似性,仅在空域(RGB)进行纹理特征学习的篡改文本检测方法不能很好地区分两类文本;另一方面,由于检测真实文本和篡改文本的难度不同,检测模型无法平衡两类文本的学习过程,从而造成两类文本检测精度的不平衡问题。相较于空域特征,文本纹理在频域中的不连续性能够帮助网络鉴别文本实例的真伪,根据上述依据,提出基于空域和频域(RGB and frequency)关系建模的篡改文本检测方法。采用空域和频域特征提取器分别提取空域和频域特征,通过引入频域信息增强网络对篡改纹理的鉴别能力;使用全局空频域关系模块建模不同文本实例的纹理真实性关系,通过参考同幅图像中其他文本实例的空频域特征来辅助判断当前文本实例...

关 键 词:篡改文本检测  空频域关系建模  篡改文本检测数据集  评估基准

Tampered text detection via RGB and frequency relationship modeling
Yuxin WANG,Boqiang ZHANG,Hongtao XIE,Yongdong ZHANG. Tampered text detection via RGB and frequency relationship modeling[J]. Chinese Journal of Network and Information Security, 2022, 8(3): 29-40. DOI: 10.11959/j.issn.2096-109x.2022035
Authors:Yuxin WANG  Boqiang ZHANG  Hongtao XIE  Yongdong ZHANG
Affiliation:University of Science and Technology of China, Hefei 230026, China
Abstract:In recent years, the widespread dissemination of tampered text images on the Internet constitutes an important threat to the security of text images.However, the corresponding tampered text detection (TTD) methods have not been sufficiently explored.The TTD task aims to locate all text regions in an image while judging whether the text regions have been tampered with according to the authenticity of the texture.Thus, different from the general text detection task, TTD task further needs to perceive the fine-grained information for real-world and tampered text classification.TTD task has two main challenges.One the one hand, due to the high similarity in texture between real-world texts and tampered texts, TTD methods that only learn from RGB domain features have limited capability to distinguish these two-category texts well.On the other hand, as the different detecting difficulty exists in real-world texts and tampered texts, the network cannot well balance the learning process of the two-category texts, resulting in the imbalance detection performance between real-world and tampered texts.Compared with RGB domain features, the discontinuity of text texture in frequency domain can help the network to identify the authenticity of text instances.Accordingly, a new TTD method based on RGB and frequency information relationship modeling was proposed.The features in the RGB and frequency domains were extracted by independent feature extractors respectively.Thus, the identification ability of tampered texture can be enhanced by introducing frequency information during the texture perception.Then, a global RGB-frequency relationship module (GRM) was introduced to model the texture authenticity relationship between different text instances.GRM referred to the RGB-frequency features of other text instances in the same image to assist in judging the authenticity of the current text instance, which solved the problem of imbalanced detection performance.Furthermore, a new TTD dataset (Tampered-SROIE) was proposed to evaluate the effectiveness of proposed method, which contains 986 images (626 training images and 360 test images).By evaluating on the Tampered-SROIE, the proposed method obtains 95.97% and 96.80% in F-measure for real-world and tampered texts respectively and reduces the imbalanced detection accuracy by 1.13%.The proposed method will give new insights to the TTD community from the perspective of network structure and detection strategy.Tampered-SROIE also provides an evaluation benchmark for future TTD methods.
Keywords:tampered text detection  RGB-frequency relationship modeling  tampered text detection dataset  evaluation benchmark  
点击此处可从《网络与信息安全学报》浏览原始摘要信息
点击此处可从《网络与信息安全学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号