首页 | 本学科首页   官方微博 | 高级检索  
     

子空间样本选择及其支持向量机人脸识别应用
引用本文:姜文瀚,周晓飞,杨静宇. 子空间样本选择及其支持向量机人脸识别应用[J]. 计算机工程与应用, 2007, 43(20): 14-17
作者姓名:姜文瀚  周晓飞  杨静宇
作者单位:南京理工大学,计算机科学与技术学院,南京,210094;南京理工大学,计算机科学与技术学院,南京,210094;南京理工大学,计算机科学与技术学院,南京,210094
摘    要:训练样本选择是支持向量机应用研究领域的重要课题之一。为此提出了一种类内模式选择新方法。该方法从选择集子空间逼近原类别样本子空间的思想出发,通过迭代,逐一选择那些到已选样本集所在子空间距离最远的样本。在MIT-CBCL人脸识别数据库training-synthetic子库上的同其他方法的比较识别实验中,表明该文方法在选样比率、选样时间以及SVM测试时间等方面均取得了较为明显的优势。

关 键 词:样本选择  子空间  支持向量机  人脸识别  模式分类
文章编号:1002-8331(2007)20-0014-04
修稿时间:2007-04-01

Subspace sample selection for SVM on face recognition
JIANG Wen-han,ZHOU Xiao-fei,YANG Jing-yu. Subspace sample selection for SVM on face recognition[J]. Computer Engineering and Applications, 2007, 43(20): 14-17
Authors:JIANG Wen-han  ZHOU Xiao-fei  YANG Jing-yu
Affiliation:Department of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing,210094,China
Abstract:Sample selection is an important topic for SVM.To attack it,a novel intra-class method based on subspace approximation of training class dataset is proposed in this paper.In one class,the subspace of the chosen set is used to approximate that of the original set.An iterative algorithm is employed to realize this process.The furthest sample to the subspace of the chosen set is selected at each step.The comparative experiments on the training-synthetic set of the MIT-CBCL face recognition database show that much lower selection ratio,much less sampling time and much faster test speed has been obtained by this approach combined with linear SVM without a loss of accuracy.
Keywords:sample selection  subspace  Support Vector Machine(SVM)  face recognition  pattern classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号