首页 | 本学科首页   官方微博 | 高级检索  
     

基于分布估计的离散差分骨干粒子群优化
引用本文:周雅兰,王甲海. 基于分布估计的离散差分骨干粒子群优化[J]. 计算机工程与应用, 2009, 45(29): 1-6. DOI: 10.3778/j.issn.1002-8331.2009.29.001
作者姓名:周雅兰  王甲海
作者单位:广东商学院,信息学院,广州,510320;中山大学,信息科学与技术学院,广州,510275
基金项目:国家自然科学基金,高等院校博士学科点专项科研基金,教育部留学回国人员科研启动基金,广东省自然科学基金,广东商学院校级科研项目 
摘    要:粒子群优化(PSO)和差分演化(DE)是两种新兴的优化技术,已经成功地应用于连续优化问题,但是它们至今尚不能像解决连续优化问题那样有效地处理组合优化问题。最近,有人提出差分骨干PSO(DBPSO)用于解决连续优化问题。首先提出离散DBPSO用于组合优化问题,然后在离散DBPSO中引入分布估计算法(EDA)来提高性能,把EDA抽样得到的全局统计信息和DBPSO获得的局部演化信息相结合来产生新解,形成基于EDA的离散DBPSO。实验结果表明EDA能大大提高离散DBPSO的性能。

关 键 词:离散差分骨干粒子群优化  分布估计  无约束二进制二次规划问题  组合优化
收稿时间:2009-07-20
修稿时间:2009-8-21 

Discrete differential barebones particle swarm optimization based on estimation of distribution
ZHOU Ya-lan,WANG Jia-hai. Discrete differential barebones particle swarm optimization based on estimation of distribution[J]. Computer Engineering and Applications, 2009, 45(29): 1-6. DOI: 10.3778/j.issn.1002-8331.2009.29.001
Authors:ZHOU Ya-lan  WANG Jia-hai
Affiliation:1.The College of Information,Guangdong University of Business Studies,Guangzhou 510320,China 2.School of Information Science and Technology,Sun Yat-sen University,Guangzhou 510275,China
Abstract:Particle Swarm Optimization(PSO) and Differential Evolution(DE) are two latest optimization techniques.These algorithms have been very successful in solving the global continuous optimization,but their applications to combinatorial optimization have been rather limited and are not as effective as in global continuous optimization.Recently,a Differential Barebones PSO(DBPSO) is also proposed for global continuous optimization.Firstly,a discrete DBPSO is proposed for combinatorial optimization,and then the Es...
Keywords:discrete differential barebones Particle Swarm Optimization(PSO)  estimation of distribution  unconstrained binary quadratic programming problem  combinatorial optimization  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号